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Kapitel 1 

Worum handelt es sich bei diesem Dokument und wie kann es verwendet werden? 

Stefan E. Huber 

Der Untertitel dieses Dokuments ist durchaus treffend: in erster Linie handelt es sich dabei um eine 

Sammlung von Aufgaben zum Üben; zum Selbst-Üben, zum Üben in der Lern- oder Kleingruppe (2-5 

Personen), zum Üben in mittelgroßen Gruppen (6-50 Personen), etwa in prüfungsimmanenten 

Lehrveranstaltungen, im Idealfall auch zum Üben in Großgruppen (> 50 Personen), etwa zur Begleitung 

oder Vertiefung einer Vorlesung. Warum? Weil Üben sowohl für die Konsolidierung als auch die 

Verfeinerung von Wissen von grundlegender Bedeutung ist (Roelle & Richter, 2025). 

Das gemeinsame Ziel der in diesem Dokument gesammelten Übungen ist deshalb sowohl die 

Übung von der als auch die Einübung in die Anwendung grundlegender statistischer Verfahren mittels 

geeigneter Software am Computer. Insbesondere sollte die Beschäftigung mit den Übungen Übende 

dazu befähigen, 

• geeignete, grundlegende statistische Verfahren für gegebene psychologische 

Fragestellungen auszuwählen, 

• die behandelten statistischen Verfahren auf gegebene Datensätze mittels geeigneter 

Computerprogramme anzuwenden, 

• die Ergebnisse der Anwendung statistischer Verfahren auf gegebene Datensätze einer 

gegebenen Fragestellung angemessen zu berichten und (u.a. mittels passender 

Grafiken) darzustellen, 

• sowie verschiedene statistische Verfahren hinsichtlich ihrer Limitationen und ihrer 

Eignung für bestimmte Fragestellungen zu vergleichen. 

Ferner handelt es sich bei diesem Dokument aber auch um Lernmaterial, das als Grundlage für 

Lehrveranstaltungen wie die „Anwendung statistischer Verfahren am Computer“ (semestral im 

Entstehungszeitraum dieses Dokuments an der Universität Graz angeboten und u.a. dort vom Verfasser 

abgehalten) dienen können soll. Besagte Lehrveranstaltung war im Entstehungszeitraum dieses 
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Dokuments als begleitende bzw. anwendungsvertiefende Übung zu den (ebenfalls an der Universität 

Graz angebotenen) Vorlesungen „Psychologische Statistik 1 & 2“ konzipiert und sollte 

Datenmanagement und statistische Datenanalyse anhand der Statistiksoftware SPSS illustrieren und 

demonstrieren. In Abstimmung mit den Vorlesungsinhalten sollten dabei grundlegende statistische 

Verfahren wie Punkt- und Intervallschätzungen von Populationsmittelwerten, Vergleich zweier und 

mehrerer abhängiger und unabhängiger Stichproben, oder Regressionsverfahren behandelt werden. 

Studierende sollten zudem in die Berichterstellung statistischer Ergebnisse nach den Richtlinien der 

American Psychological Association (APA) eingeführt werden. 

Um der Möglichkeit der Verwendung dieses Dokuments als Lernmaterial für eine solche 

Lehrveranstaltung gerecht werden zu können, wird daher in diesem Dokument einerseits ein großes 

Gewicht auf die inhaltliche Nähe zu den genannten Vorlesungen und andererseits auf den 

Übungscharakter der Lehrveranstaltung „Anwendung statistischer Verfahren am Computer“ gelegt. 

Konkret bedeutet dies, dass Vorlesungsinhalte anhand einer Vielzahl von Übungsbeispielen illustriert 

werden. Dies soll insbesondere die Konsolidierung von Wissen aus der Vorlesung fördern, gleichzeitig 

aber auch Raum für Transferleistungen vom Abstrakten zum Konkreten und vice versa, sowie für 

anschließende Reflexionsprozesse (Elvira et al., 2017) als Grundlage zur Entwicklung statistischer 

Expertise schaffen. 

Die Übungsbeispiele können größtenteils mit der Statistiksoftware SPSS ausgearbeitet werden 

(aber eine Beschränkung auf diese Software ist gleichzeitig keinesfalls notwendig). Für manche 

Übungsbeispiele werden auch andere geeignete Computerprogramme verwendet (z.B. die Software 

G*Power zum Zweck der Stichprobenumfangsplanung). Da auch das Erlernen eines grundlegenden 

Umgangs mit diesen Programmen zum Inhalt der Lehrveranstaltung „Anwendung statistischer 

Verfahren am Computer“ gehört, werden wiederum anhand praktischer Beispiele Schritt-für-Schritt-

Anleitungen angeboten, die ein Erlernen dieses Umgangs einerseits erst ermöglichen und in weiterer 

Folge durch wiederholtes Üben fördern sollen. 
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Aufbau des Lernmaterials 

Das gesamte Lernmaterial, das in diesem Dokument gesammelt vorliegt, ist in einzelne Kapitel 

unterteilt, die jeweils einen bestimmten Themenkomplex (oder mehrere kleinere Themenbereiche) 

grundlegender statistischer Datenanalyse behandeln. Kapitel 2 gibt beispielsweise eine knappe 

Einführung in die Verwendung und den Aufbau der Software SPSS, sowie die Dateneingabe bzw. das 

Einlesen externer Dateiformate. Dieser Einführung in die Software wird etwas mehr Platz bzw. Detail 

eingeräumt, da gerade die Bedienung einer neuen Software anfangs eine Hürde darstellen kann, die sich 

erfahrungsgemäß äußerst negativ auf die Lernmotivation auswirken kann. Ein Ziel dieses Kapitels ist 

bzw. war es u.a. auch Studierenden der Universität Graz zu ermöglichen, die Software SPSS von zu 

Hause aus verwenden und erproben zu können, ohne diese gleich käuflich erwerben zu müssen. Kapitel 

3 widmet sich anschließend dem Datenmanagement bereits vorhandener Datensätze (z.B. dem 

Umkodieren von Variablen oder der Erzeugung neuer Variablen aus bereits vorhandenen) sowie der 

Ermittlung und Darstellung üblicher deskriptiver Statistiken mittels Tabellen, Maßzahlen (Modalwert, 

Median, Mittelwert, Varianz, Standardabweichung), und grafischen Darstellungsformen. 

Kapitel 4 befasst sich erstmals mit inferenzstatistischen Inhalten am Beispiel von Punkt- und 

Intervallschätzungen des Populationsmittelwerts sowie ungerichteten und gerichteten Hypothesen über 

den Populationsmittelwert auf der Grundlage einer einfachen Zufallsstichprobe einer normalverteilten 

Zufallsvariable. Diese grundlegenden Verfahren werden dann in Kapitel 5 zu den entsprechenden 

Analysen für Mittelwertsunterschiede zwischen zwei abhängigen und unabhängigen Stichproben 

weiterentwickelt. Bis hierhin entsprechen die Inhalte der oben erwähnten Vorlesung „Psychologische 

Statistik 1“. Das heißt ab Kapitel 6 werden Inhalte des zweiten Teils der erwähnten Vorlesung in 

Übungsbeispielen illustriert. In den Kapiteln 6-8 werden Varianzanalysen behandelt. Kapitel 9-12 

befassen sich schließlich mit Regressionsanalysen. 

In den meisten Kapiteln führen nach einer Wiederholung wesentlicher theoretischer 

Grundkonzepte einige vollständig ausgearbeitete Übungsbeispiele durch die jeweiligen Lerninhalte. 

Dabei wird darauf Wert gelegt, dass die Anwendung des jeweiligen Verfahrens Schritt-für-Schritt 

erläutert und beschrieben wird. Der Detailgrad der Ausarbeitungen soll den Transfer auf andere 

Fragestellungen, die prinzipiell mit denselben Verfahren beantwortet werden können, erleichtern. Um 
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diesen Transfer erproben bzw. einüben zu können, wird am Ende jedes Kapitels eine Reihe weiterer 

Übungsaufgaben angeboten, die jedenfalls mit den Inhalten der ausgearbeiteten Beispiele des jeweiligen 

oder der vorhergehenden Kapitel selbständig lösbar sein sollten. 

Mithilfe dieses Dokuments sollte es also prinzipiell möglich sein, sich die Anwendung 

grundlegender statistischer Verfahren am Computer (mittels SPSS) selbst anzueignen. Wie bereits oben 

erwähnt, soll sich aber das Dokument auch als Grundlage für die Lehrveranstaltung „Anwendung 

statistischer Verfahren“ der Universität Graz eignen können (jedenfalls in der Form, in welcher diese 

Lehrveranstaltung in den Jahren 2023-2026 üblicherweise abgehalten wurde). Zur Verwendung für 

diese oder hinreichend ähnliche Lehrveranstaltungen seien mir hier noch einige einführende 

Anmerkungen gestattet. 

Verwendung des Dokuments für die Lehrveranstaltung „Anwendung statistischer Verfahren am 

Computer“ 

Für die Verwendung dieses Dokuments als Grundlage für besagte Lehrveranstaltung empfiehlt 

sich aufgrund des Aufbaus der einzelnen Kapitel die didaktische Methode des sogenannten umgekehrten 

Klassenzimmers. Die einzelnen Kapitel sind so gestaltet, dass die vollständig ausgearbeiteten Inhalte in 

etwa 1-2 Stunden konzentrierten Studiums selbständig erarbeitet werden können. Als Lehrender würde 

ich daher Studierenden die Ausarbeitung jeweils eines Kapitels pro Woche bis zur nächsten 

Präsenzeinheit empfehlen und die erste Hälfte der folgenden Präsenzeinheit für die gemeinsame 

Nachbesprechung bzw. ein „Ins-Gedächtnis-Rufen“ der Inhalte und Klärung von Fragen und 

Unklarheiten nutzen. Die zweite Hälfte würde ich zur Festigung des Lernmaterials mithilfe der am Ende 

jeden Kapitels zur Verfügung stehenden Übungsbeispiele nutzen. Für diese Übungsbeispiele können zur 

Vorbereitung der Lehrveranstaltung von den Lehrenden Musterlösungen ausgearbeitet werden (in einem 

Alternativmodus zur Durchführung der Lehrveranstaltung, der am Ende dieses Kapitels kurz erläutert 

wird, werden solche Musterlösungen auch von Studierenden zur Vorbereitung auf die jeweilige 

Präsenzeinheit erarbeitet). 

Der Vergleich der von den Studierenden in den Präsenzeinheiten erarbeiteten Lösungen mit 

diesen Musterlösungen erlaubt dann eine direkte Rückmeldung sowohl für Studierende als auch 



Kapitel 1: Worum handelt es sich bei diesem Dokument und wie kann es verwendet werden? 

9 

Lehrende dahingehend, wo noch Unklarheiten bzw. Nachholbedarf an zusätzlichen Erläuterungen oder 

Illustrationen des Lernmaterials besteht. Für Studierende ist diese Rückmeldung durch direkten Versuch 

der Anwendung der jeweiligen Verfahren auf konkrete Inhalte in der Präsenzeinheit nützlich, um 

beurteilen zu können, wie gut sie sich das Lernmaterial des jeweiligen Kapitels bereits im Selbststudium 

aneignen konnten und wo noch Schwierigkeiten hinsichtlich des Transfers auf andere 

Datenanalysekontexte (wie sie durch die Übungsbeispiele repräsentiert werden) bestehen. Die 

Studierenden können also im Idealfall durch die Übungsbeispiele in jeder Präsenzeinheit beurteilen, wo 

sie mit ihrem Verständnis des Lernmaterials aktuell stehen und im Bedarfsfall die wöchentlich 

aufgebrachte Lernzeit oder Intensität des Studiums für die Lehrveranstaltung adjustieren. 

Für Lehrende sind die erhaltenen Rückmeldungen nützlich um beurteilen zu können, wo noch 

Unterstützungsbedarf für die Bildung eines grundlegenden Verständnisses des Lernmaterials besteht. 

Lehrenden bietet das gemeinsame Bearbeiten der Übungsbeispiele also im Idealfall ein 

Beurteilungsinstrument, um Verständnisschwierigkeiten zeitnah entgegenwirken und die Gestaltung der 

Lehrveranstaltung dynamisch anpassen zu können. 

Verwendung der Übungsbeispiele 

Bei einer angenommenen Dauer von 1,5 Stunden für die wöchentlichen Präsenzeinheiten wird 

es nur in Ausnahmefällen möglich sein, alle Übungsbeispiele eines bestimmten Kapitels in der 

Präsenzeinheit mit den Studierenden durchzuarbeiten. Hier bietet es sich an, vorab eine didaktisch 

überlegte Auswahl vorzunehmen, die aber auf Basis der Rückmeldungen in den Präsenzeinheiten 

dynamisch auf akute Bedürfnisse abgestimmt werden kann. Übungsbeispiele, die nicht gemeinsam 

bearbeitet und besprochen werden, können von den Studierenden zur weiteren Vertiefung, aber 

insbesondere auch zur Klausurvorbereitung (siehe unten) genutzt werden. 

Für die Bearbeitung der Übungsbeispiele in den Präsenzeinheiten wird die Ausarbeitung in 

Kleingruppen von etwa 3-4 Personen empfohlen. Dies erlaubt anfangs leistungsschwächeren 

Studierenden sich an leistungsstärkeren zu orientieren bzw. von diesen Unterstützung zu erhalten, 

leistungsstärkere Studierende haben zudem den Bonus durch die Unterstützung anfangs 

leistungsschwächerer Studierender das Lernmaterial zusätzlich zu festigen (es gibt kaum eine bessere 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

10 

Methode Lerninhalte selbst zu verinnerlichen als den wiederholten Versuch die Lerninhalte anderen 

begreiflich zu machen; siehe auch sog. Lernen durch Lehren bei Duran, 2017; interessanterweise 

funktioniert der Ansatz auch hervorragend ohne Gegenüber, siehe z.B. Lachner et al., 2022). Über die 

Zeit können so anfängliche Verständnisunterschiede in den Kleingruppen ausgeglichen werden. 

Einem etwaigen „Trittbrettfahren“ in der Gruppe kann dadurch entgegengewirkt werden, dass 

die Gruppen dazu aufgefordert werden, dass für die gemeinsame Bearbeitung jedes neuen 

Übungsbeispiels jeweils ein:e andere:r Studierende:r hauptverantwortlich ist (d.h. die nötigen Schritte 

am PC durchführt, den Ergebnisbericht schreibt etc.) und die anderen Studierenden unterstützend bzw. 

beratend zur Seite stehen. Auch der Lerneffekt durch kritisches Beobachten und aufmerksames 

„Ausschauhalten“ nach Fehlern und Irrtümern wie sie grundsätzlich im Laufe jeder Datenanalyse immer 

wieder passieren, kann kaum überschätzt werden. Ein besonders wichtiges Lernziel im Rahmen 

statistischer Datenanalyse sollte gerade sein, für möglichst viele Arten möglicher Denkfehler und 

Irrtümer eine Sensibilität zu entwickeln und zu schärfen, die es schließlich erlaubt, praktische Strategien 

zu entwickeln, wie solche Fehler dann in eigenen Datenanalysesituationen verlässlich und 

verhältnismäßig rasch erkannt und korrigiert werden können. 

Gerade für einen konstruktiven, lehrreichen Umgang mit Fehlern (Metcalfe, 2017), 

Missverständnissen und Irrtümern, d.h. für eine in der Praxis nützliche Fehlerkultur, ist es meines 

Erachtens für die Lehrveranstaltung unerlässlich, dass die Bearbeitung der Übungsbeispiele in den 

Präsenzeinheiten lediglich der Festigung, dem Üben und dem Ausprobieren der Anwendung 

statistischer Verfahren gilt und als solche Tätigkeit selbst nicht – etwa zum Zwecke der Notenvergabe 

– bewertet wird. Die Präsenzeinheiten sollen Lernräume sein, in denen Fehler gemacht, wenn nicht sogar 

herausgefordert werden sollen (Metcalfe, 2017), um ihnen dann konstruktiv begegnen zu können; d.h. 

Fehler nutzen zu können, um von ihnen und durch sie zu lernen, um letztlich dafür Sorge zu tragen, die 

Wahrscheinlichkeit für Fehler in Situationen, in denen es „wirklich darauf ankommt“, zu minimieren. 

Zu erlernen wie statistische Verfahren anzuwenden sind, heißt auch herausfinden, was 

vermieden werden sollte, was lieber zu oft als zu selten überprüft werden sollte, und welche 

Limitationen grundsätzlich mit den (eigenen) Auswertungen einhergehen. Das heißt auch, die 
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Sicherheit, mit der gewisse Aussagen getroffen werden können, vernünftig einschätzen zu können (eine 

Fähigkeit, die in der statistischen Datenanalyse in der Tat eine sehr konkrete Bedeutung bekommt). 

Auch Negativbeispiele, z.B. von Ergebnisberichten, können dann gleich in der Präsenzeinheit 

konstruktiv genutzt werden, um im Plenum auf typische Fehler hinzuweisen bzw. Studierende für diese 

zu sensibilisieren, sowie Strategien zu erarbeiten wie diese Fehler erkannt, vermieden oder korrigiert 

werden können. Wenn also erste Versuche selbst Ergebnisberichte zu verfassen, noch keine Texte 

hervorbringen, die man gerne – mit dem eigenen Namen versehen – mit der breiten Öffentlichkeit würde 

teilen wollen, ist das kein Problem, sondern ganz im Gegenteil eine Gelegenheit, die das Lernen und 

Üben überhaupt erst ermöglicht. 

Das gemeinsame Probieren und Üben in den Präsenzeinheiten soll eben gerade jenen großen 

Vorteil bieten, dass typische Missverständnisse und Irrtümer von allen Teilnehmenden erlebt und ein 

konstruktiver Umgang mit ihnen erlernt und geübt werden kann. Die Bewertungsfreiheit der 

Präsenzeinheit muss dahingehend aber gewährleisten, dass Fehler passieren dürfen und zum Zwecke 

des Lernens sogar passieren sollen, und keineswegs als stigmatisierend erlebt werden sollten. Darauf 

hat insbesondere die Lehrperson aktiv zu achten und eine wohlwollende, konstruktive Fehlerkultur 

sowohl im Umgang mit anderen als auch mit sich selbst zu exemplifizieren. Im Idealfall kann jeder 

Fehler in den Präsenzeinheiten für alle Teilnehmenden zu einem Fehler werden, der im Ernstfall – etwa 

in einer Klausur – nicht mehr passieren muss. 

Der Vergleich der von den Kleingruppen erarbeiteten Lösungen für die Übungsbeispiele mit 

von den Lehrenden bereitgestellten Musterlösungen erlaubt den Studierenden zudem Lernen durch 

selbstständiges Beurteilen der eigens erarbeiteten Lösungen oder der Lösungen, die von anderen 

Kleingruppen erarbeitet wurden. Insbesondere der Vergleich mit den Lösungen anderer Kleingruppen 

kann für alternative Lösungswege oder weniger passende Formulierungen von Ergebnisberichten etc. 

sensibilisieren und damit die Reflexion (und dadurch die Aneignung) des Lernmaterials fördern. Die 

Vergabe von Punkten (nicht durch die Lehrperson, sondern durch die Studierenden selbst) kann zudem 

einen Vergleich der Kleingruppen untereinander ermöglichen, der etwa mittels einer wöchentlich 

aktualisierten Rangliste (Engl.: Leaderboard) rückgemeldet werden kann (wobei eine solche Form der 
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„Gamifizierung“ aber auch keinesfalls nötig ist). Diese Punkte können dann zum einen als weiterer 

Rückmeldeprozess dienen, der anzeigt, wo Studierende mit ihrem Verständnis der Inhalte relativ zu 

anderen Studierenden stehen. Zum anderen kann sich dieses relative und wöchentlich aktualisierte 

Punktesystem, jedenfalls sofern dieses klar vom Beurteilungsschema für die Lehrveranstaltung, aus dem 

sich individuelle Noten ableiten, getrennt bleibt, durchaus motivational positiv auswirken. Im Idealfall 

wird jede Präsenzeinheit ein spielerisches Erlebnis, bei dem die Kleingruppen versuchen, durch 

Anwendung ihrer statistischen Kenntnisse möglichst viele Punkte zu ergattern. Wenn die 

Übungsbeispiele das Lernmaterial hinreichend abdecken, bedeutet eine hohe Punktzahl auch ein 

entsprechend hohes Verständnis, zumindest innerhalb der Kleingruppe, und stellt damit ein geeignetes 

Rückmeldeinstrument für Studierende und Lehrende dar, und kann und soll daher auch als solches 

genutzt werden. 

Beurteilung: Hausübungen und Abschlussklausur 

Um die Präsenzeinheiten als Lern-, Probier- und Spielraum zu gewährleisten, wird ferner 

empfohlen, zur im Rahmen einer prüfungsimmanenten Lehrveranstaltung notwendigen Beurteilung der 

individuellen Leistung die wöchentliche Vorbereitung auf die Präsenzeinheiten und das gemeinsame 

Üben in den Präsenzeinheiten um mehrere Hausübungen und wenigstens eine Abschlussklausur zu 

ergänzen. Zur Beurteilung der individuellen Leistung werden dann ausschließlich die Leistungen bei 

diesen Hausübungen und der Abschlussklausur herangezogen. Im Gegensatz zu den gemeinsamen 

Übungen in den Präsenzeinheiten sind diese dann klarerweise auch individuell zu erbringen und zu 

bewerten. 

In einem Alternativmodus der Abhaltung der Präsenzeinheiten (siehe auch die detailliertere 

Beschreibung am Ende dieses Kapitels) demonstrieren die Studierenden selbst wöchentlich ihre eigens 

in der Vorbereitung erarbeiteten Lösungen zu den Übungsaufgaben. D.h. dieser Modus setzt vermehrt 

auf das Konzept des Lernens durch Lehren (Duran, 2017). Da in diesem Modus allerdings deutlich mehr 

Leistung außerhalb der Präsenzübungen über das Semester hinweg erbracht werden muss, kann in 

diesem Alternativmodus auch auf die Hausübungen verzichtet werden. Bei der Vorbereitung auf jede 

Präsenzeinheit handelt es sich dann ohnehin bereits jeweils um regelmäßige Hausübungen. Für die 
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Beurteilung der individuellen Leistungen zu Semesterende kann die Abschlussklausur in diesem Fall 

auch auf zwei Klausuren – eine zu Semestermitte, eine wie gehabt zu Semesterende – aufgeteilt werden. 

Für den Modus mit beurteilten Hausübungen werden vier Hausübungen empfohlen, die relativ 

gleichmäßig über den Zeitraum der Lehrveranstaltung bzw. das Lernmaterial verteilt werden sollten. 

Das heißt, dass im Rahmen der Hausübungen jeweils ein etwas umfangreicheres Stoffgebiet als für die 

wöchentliche Vorbereitung auf die Präsenzeinheit zu bearbeiten ist. Dabei sollte es sich in etwa um den 

Lernstoff von etwa 3-4 Präsenzeinheiten handeln (mit Ausnahme der ersten Hausübung, siehe unten). 

Die Hausübungen sollten den vollständig ausgearbeiteten sowie gemeinsam erarbeiteten 

Übungsbeispielen aus den Präsenzeinheiten insofern ähneln, als dass eine selbständige Lösung der 

Hausübungsbeispiele auf der Grundlage der durch die Übungsbeispiele gelernten Inhalte jedenfalls gut 

möglich sein sollte. D.h. konkret, wer sich jeweils auf die Präsenzeinheiten regelmäßig vorbereitet und 

in diesen aktiv mitgewirkt hat, sollte sich bei den Hausübungen keinesfalls vor unlösbare Aufgaben 

gestellt sehen, sondern im Idealfall Gelegenheiten vorfinden, bei denen das eigene Wissen und Können 

individuell zur Anwendung gebracht und demonstriert, und dadurch Selbstwirksamkeit erlebt werden 

kann. 

Davon sollte sich prinzipiell auch die Abschlussklausur nicht unterscheiden. Auch diese sollte 

aus mehreren konkreten Beispielen bestehen, die durch die Aneignung des Lernmaterials individuell 

und selbständig zu lösen sein sollten. Das heißt wiederum, dass es sich bei der Abschlussklausur im 

Idealfall um eine Gelegenheit handelt, um zu zeigen, dass man das, was man in den Präsenzeinheiten in 

der Kleingruppe und bei den Hausübungen individuell, nun auch selbständig und individuell für den 

gesamten Lernstoff der Lehrveranstaltung umsetzen kann. 

In engem Zusammenhang mit der Abschlussklausur offenbaren sich dann auch einige weitere 

Vorteile des regelmäßigen, gemeinsamen Übens von Übungsaufgaben inklusive des gemeinsamen 

Bewertens erarbeiteter Lösungen. Erstens sind mit den zahlreichen unterschiedlichen Übungsaufgaben 

die unterschiedlichen Formate an möglichen Beispielen – sowohl für Hausübungen als auch die 

Abschlussklausur – bekannt. Bei diesen Formaten handelt es sich zum Teil um geschlossene oder offene 

Fragen, die hauptsächlich auf das Verständnis oder auch das Einprägen einer statistischen „Grammatik“ 
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abzielen. Wie jeder Fachbereich hat auch die Statistik eine eigene, wenn nicht gar recht eigentümliche 

Sprache. Ohne jede Einübung in diese bleibt es oft lange schwierig sich in der Statistik zurechtzufinden. 

Auch gut gemeinte Hilfsangebote (von natürlicher wie auch künstlicher Intelligenz) bleiben dann häufig 

weit hinter ihrer Intention zurück, wenn ein grundlegendes Sprachverständnis fehlt. Wenn mir jemand 

den Weg auf Portugiesisch erklärt, wird mir nicht viel geholfen sein, sofern ich Portugiesisch nicht auch 

verstehen kann. Zudem bieten Aufgaben dieses Typs als Form einer Abrufübung (Heitmann et al., 2018, 

2022) den Vorteil der leichten Implementierbarkeit, führen zu deutlich besseren Ergebnissen für die 

Wissenskonsolidierung als das erneute Durchsehen oder Durcharbeiten des Lernmaterials (Adesope et 

al., 2017; Roediger & Karpicke, 2006; Roelle & Berthold, 2017), und fördern die Wirksamkeit von 

Transferaufgaben, bei welchen die durch die Abrufübung konsolidierten Inhalte verwendet werden 

müssen (Pan & Rickard, 2018). 

Ein weiteres typisches Format ist das Vorgeben einer Fragestellung und eines Datensatzes mit 

der Aufforderung, die (statistische) Fragestellung zu erhellen und einen entsprechenden Ergebnisbericht 

zu erstellen. Dabei handelt es sich vermutlich um den klassischen Fall eines Übungsbeispiels für die 

Anwendung statistischer Verfahren. Er entspricht auch einer recht häufigen Situation, wenn man es 

selbst in der wissenschaftlichen Praxis mit statistischer Datenanalyse zu tun hat. Das regelmäßige Üben 

dieses Aufgabenformats in Vorbereitung auf und während der Präsenzeinheiten stellt eine Realisierung 

des sukzessiven Wiederlernens (Bahrick, 1979) dar, das gegenüber herkömmlichen Lehr- und 

Lernmethoden den Vorteil bietet, dass Inhalte wiederholt gemeistert werden müssen. Gerade in 

Hochschulkontexten ist es häufig der Fall, dass Inhalte, nachdem sie in der Lehrveranstaltung von 

Lehrenden behandelt wurden, von Studierenden erst kurz vor Prüfungen oder Klausuren erneut 

behandelt werden. Ganz im Gegensatz zum sukzessiven Wiederlernen werden Lerninhalte in diesem 

Fall kein einziges Mal überhaupt gemeistert (Rawson & Dunlosky, 2022). Sukzessives Wiederlernen 

scheint demgegenüber massive Vorteile in Bezug auf die langfristige Behaltensleistung erbringen zu 

können (Higham et al., 2022; Rawson et al., 2013; Rawson & Dunlosky, 2011). 

Ein weiteres und recht praxisnahes Aufgabenformat besteht darin, dass man eine statistische 

Analyse mit oder ohne Ergebnisbericht bereits vorliegen hat und diese bzw. den Ergebnisbericht nun 

überprüfen soll (etwa weil man ganz nach dem – sehr nützlichen – Prinzip „Vier Augen sehen mehr als 
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zwei“ die Arbeit eines:einer Kollegen:in überprüfen darf oder vielleicht auch bloß Hausübungen in einer 

entsprechenden Lehrveranstaltung korrigieren soll). Auch dieses Format wird man hier in 

entsprechenden Übungsbeispielen wieder finden. 

Schließlich wird auch das Einüben in das Schreiben von Ergebnisberichten didaktisch 

stellenweise intensiviert bzw. fokussiert, indem die Ausgabe einer bestimmten Analyse vorgegeben wird 

und „nur“ noch der Ergebnisbericht zu erstellen ist. Didaktisch kann es durchaus sinnvoll sein, einzelne 

Teilaspekte zusammengesetzter Tätigkeiten für sich genommen zu üben, und dann, wenn die einzelnen 

Handlungen gut gefestigt sind, wieder zu einem Ganzen zusammenzusetzen. Dementsprechend wird es 

auch Übungsbeispiele geben, in welchen man einen Ergebnisbericht zu einer bestimmten Fragestellung 

bereits teilweise gegeben hat und nur noch die Lücken in diesem auszufüllen sind. Hier geht es also 

vorrangig darum, zu erkennen, welches Verfahren hier zu verwenden ist, und dieses dann anzuwenden, 

um die fehlenden Informationen vervollständigen zu können. Dieses Übungsformat steht also wiederum 

einer Abrufübung näher. 

Während also einzelne dieser Formate vielleicht besser oder schlechter zur Förderung eines 

bestimmten Aspekts der Lernziele dienen, sollte ihre Gesamtheit die Erreichung der Lernziele doch 

recht gut fördern können. In ihrer Gesamtheit erfüllt die Heterogenität der unterschiedlichen 

Übungsformate auch die Voraussetzungen des verschachtelten Übens, dessen Wirksamkeit ebenfalls 

empirisch belegt ist (Brunmair & Richter, 2019). Die Verteilung der verschiedenen Übungsformate über 

das Semester in unterschiedliche Phasen strenger regulierten Übens während der Präsenzeinheiten sowie 

autonomeren Übens zwischen den Präsenzeinheiten ist zudem der Lernform des verteilten Übens 

dienlich, deren Wirksamkeit empirisch gut belegt ist (Ebersbach et al., 2022). 

Studierende werden demnach im Verlauf der Lehrveranstaltung schrittweise mit einer Vielzahl 

unterschiedlicher Übungsformate bekanntgemacht und dadurch sowohl auf entsprechende Hausübungs- 

und Klausuraufgaben als auch reale bzw. praxisnahe Datenanalysesituationen vorbereitet. Durch das 

gemeinsame Bewerten erarbeiteter Lösungen von Übungsaufgaben wird ferner der Beurteilungsmodus 

für Hausübungen und Abschlussklausur transparent. Die Wahrscheinlichkeit für „böse 

Überraschungen“, sowohl was die Art als auch die Bewertung von Hausübungen und Klausuraufgaben 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

16 

angeht, sollte dadurch minimiert werden. Unklarheiten und Rückfragen können dadurch im Idealfall im 

Vorhinein und nicht erst im Nachgang anhand von konkreten Situationen und Beispielen geklärt werden. 

Formal sind den Hausübungen und der Klausur selbstverständlich noch Gewichtungen zu 

vergeben. Zum Beispiel können hier jeder der vier Hausübungen jeweils 10 Punkte und der 

Abschlussklausur 60 Punkte vergeben werden, was in einer Gesamtpunkteanzahl von 100 Punkten 

resultiert. Die größere Gewichtung der Abschlussklausur hat zum Hintergrund, dass alle Studierenden 

auch individuell aufgefordert sind, sich mit der Aneignung der Gesamtheit des Lernmaterials zu 

befassen, und nicht bloß häppchenweise zu verarbeiten, was erfahrungsgemäß einer längerfristigen 

Festigung der Inhalte nicht förderlich ist. Letzterer soll auch das Format der Abschlussklausur dienen, 

auf welches im folgenden Abschnitt eingegangen wird. 

Format der Abschlussklausur 

Da es bei der Abschlussklausur zum einen um die Überprüfung der individuellen Fähigkeit zur 

Aneignung und selbständigen Anwendung des Lernmaterials geht, wird die Durchführung der 

Abschlussklausur als sogenannte Closed-Book Klausur empfohlen. Dies soll u.a. eine tiefere kognitive 

Verarbeitung der Lerninhalte in der Vorbereitung erfordern und damit auch fördern. Es ist bekannt, dass 

das Wissen um die Möglichkeit jederzeit gewisse Inhalte nachschlagen zu können, der kognitiven 

Verarbeitungstiefe zuwiderläuft. Tatsächlich werden Gedächtnisinhalte flüchtiger gespeichert (das 

Gehirn handelt sozusagen ökonomisch und sagt sich „warum soll ich mich dafür großartig 

umstrukturieren, wenn das ohnehin jederzeit nachgeschaut werden kann?“), wenn bekannt ist, dass sie 

leicht zugänglich sind und ohne große Schwierigkeiten nachgeschlagen werden können (siehe z.B. 

Sparrow et al., 2011). 

Eine gewisse kognitive Mindestverarbeitungstiefe von grundlegenden Inhalten (grundsätzlich 

egal welchen Fachgebiets) einzufordern, scheint allerdings aus mehreren Hinsichten empfehlenswert. 

Spätere, konkrete Datenanalysesituationen, wie etwa im Rahmen der Bachelor- oder Masterarbeit, 

werden häufig das Erlernen spezialisierterer Analyseverfahren erfordern, die weit über die 

grundlegenden Konzepte dieses Dokuments hinausgehen können und werden. Das Erlernen solcher 

fortgeschrittenen Verfahren setzt meist fundierte und belastbare Grundlagenkenntnisse und ein 
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Verständnis einer grundlegenden statistischen Denkungsart voraus. Um in der Metapher von oben zu 

bleiben: es fällt einem entsprechend umstrukturierten Gehirn leichter, sich in diese fortgeschrittenen 

Verfahren einzuarbeiten bzw. einzudenken. Das heißt, das Umstrukturieren, das sich das Gehirn gerne 

ersparen würde, ist gerade das Ziel der Übung. Man kann dies auch mit grundlegenden Übungen von 

Sportler:innen vergleichen. Skispringer:innen etwa führen regelmäßig (im Profibereich auf nahezu 

täglicher Basis) grundlegende, die Bauchmuskeln und den Rücken stärkende Übungen durch (neben 

einer Vielzahl anderer Fitnessübungen). Das tun sie aber nicht, weil sie im Wettkampf oder beim 

Training auf der Schanze diese Übungen „vorzeigen“ müssen. Der Grund ist einfach die Bildung eines 

Muskel- bzw. Bewegungsapparats, der die nötigen Strukturen besitzt und Voraussetzungen erfüllt, die 

für die Durchführung der eigentlichen Kernaktivitäten ihres Berufs (Skispringen) schlichtweg 

notwendig ist. Genauso hat die Einübung in die Anwendung grundlegender statistischer Verfahren 

vorrangig die Bildung eines entsprechenden Denk- und Handlungsapparats zum Ziel, der die Praxis der 

statistischen Datenanalyse in späteren, „echten“ Datenanalysesituationen überhaupt erst ermöglicht. 

Kommt es dann zu diesen „echten“ Datenanalysesituationen (etwa im Rahmen der Bachelor- 

oder Masterarbeit, einer Dissertation, oder der ganz normalen Berufspraxis, die selbstverständlich je 

nach Werdegang durchaus im Aufkommen der Notwendigkeit von statistischer Datenanalyse variieren 

kann) müssen diese grundlegenden Fähigkeiten dann lediglich reaktiviert werden. Müssen sie 

stattdessen in diesen Fällen überhaupt erst zum ersten Mal erlernt werden (wird also erst mit dem 

Bauchmuskel- und Rückentraining begonnen, wenn man bereits auf der Schanze darauf wartet als 

Nächster hinunterzuspringen), ist eventuell spät ein hoher Preis für ein frühes Versäumnis zu entrichten. 

Dem soll durch die Einforderung einer ausreichenden Verarbeitungstiefe bei der Aneignung des 

Lernmaterials zumindest entgegengewirkt werden. 

Dabei ist es auch wichtig, sich noch einmal klarzumachen, dass es sich bei der Klausursituation 

nicht um die Abbildung einer praxisnahen Datenanalysesituation handelt und auch nicht handeln soll 

(ein Einwand, der immer wieder einmal gerne von Studierenden, aber auch Absolvent:innen gemacht 

wird). Es ist selbstverständlich in jeder praxisnahen Datenanalysesituation sinnvoll bei Unklarheiten in 

einschlägigen Quellen nachzuschlagen, und nicht wie bei einer Closed-Book Klausur zu versuchen, alle 

Herausforderungen bloß mit den Mitteln zu bewältigen, die man noch aktiv im Gedächtnis hat (dies 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

18 

würde auch nicht der Sorgfaltspflicht, die man als Datenanalyst etwaigen Kund:innen gegenüber, als 

Wissenschaftler:in der Wahrheitsfindung gegenüber auf sich nimmt, gerecht werden). Allerdings setzt 

die Fähigkeit sich adäquat in solchen konkreten Situationen zu informieren und überhaupt die eigenen 

Kenntnisse einschätzen zu können, wie oben bereits bemerkt, bereits ausreichende grundlegende 

Fähigkeiten und Kenntnisse voraus. Man stelle sich nur einmal vor, jemand bestellt aufgrund eines 

Heizungsproblems Handwerker zu sich nach Hause und diese beginnen sich dann vor Ort mit Google, 

Wikipedia und ChatGPT über Schraubenschlüssel, Rohrzangen, typische Maße von Anschlüssen und 

andere handwerkliche Grundlagen zu informieren. Es ist klar, dass die fiktiven Handwerker mit diesem 

bestimmten Heizungssystem vielleicht noch nie konfrontiert waren, aber ein grundlegendes Wissen von 

Heizungssystemen überhaupt und entsprechenden Werkzeugen etc. würden sich wohl die meisten 

Kund:innen völlig zu Recht erwarten. 

Das heißt, das Ziel der Abschlussklausur ist nicht, dass Studierende einzelne Arbeitsschritte 

auswendig lernen sollen. Das Ziel ist, dass Studierende sich kognitiv intensiv genug mit dem 

Lernmaterial befassen, dass sie dieses zum Ende der Lehrveranstaltung hin behände anwenden können. 

Eine angemessen tiefe Verarbeitung hat oft zur Konsequenz, dass grundlegende Schritte leicht oder wie 

automatisiert von der Hand gehen und es so aussieht, als würde man eine Abfolge von Arbeitsschritten 

auswendig wissen, auch wenn es sich bei einem grundsätzlichen Verstehen ganz sicher nicht um 

lexikalisches Wissen handelt. In der Tat sind solche (scheinbaren) Automatismen auch gute Indikatoren 

für eine ausreichende kognitive Verarbeitungstiefe in der Vorbereitung. Das Ziel bzw. der Zweck einer 

Closed-Book Klausur bleibt aber immer jene ausreichende kognitive Verarbeitung und nicht die 

Indikatoren, an denen man diese (u.a. und nicht zweifelsfrei) erkennen kann. Dass Closed-book Formate 

diese tiefergehende kognitive Verarbeitung auch in der Tat herausfordern und fördern, dürfte auch dem 

empirischen Befund zugrunde liegen, dass höhere Lernleistungen tatsächlich in Closed-book 

Implementierungen von Wissensprüfungen erbracht werden als in Open-book Implementierungen 

(Rummer et al., 2019). 

Dass ein grundlegendes Verständnis von Inhalten oft von einem (scheinbaren) hohen Maß an 

lexikalischem Wissen begleitet wird, kann man sich auch in einem Gedankenexperiment (das zu 

realisieren ich nur jedem empfehlen kann, der an der Aneignung welchen Lerninhalts auch immer 
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ernsthaft interessiert ist) leicht selbst ein Bild machen. Stellen Sie sich vor, Sie möchten einem Kollegen 

oder einer Kollegin helfen, ein gewisses Konzept aus der Statistik zu erklären. Sie treffen sich und 

beginnen zu erklären. Allerdings kommen Sie bereits beim ersten Satz ins Stocken, unterbrechen Ihre 

Erläuterung, um Google oder ChatGPT zu konsultieren (z.B. um zu fragen, wie man dieses Konzept 

jemandem in einfachen Worten erklären kann). Wie hoch würden Sie Ihre Kompetenz in diesem Fall 

einschätzen? Vermutlich kommen Sie in diesem Fall eher zu einer unbefriedigenden Antwort. 

Allerdings lassen Sie sich von dieser Erfahrung nicht entmutigen und beschäftigen sich 

daraufhin eingehend mit weiterer Literatur (und natürlich auch mit den Antworten, die Sie von ChatGPT 

und Google erhalten haben; am Einholen derselben ist ja grundsätzlich nichts Verwerfliches, sondern 

ganz im Gegenteil, häufig sehr viel Nützliches und Sinnvolles). Tatsächlich fragt Sie einige Zeit später 

wieder ein:e Kolleg:in um Rat. Sie beginnen wieder zu erklären, und bemerken, dass ihre Erklärung 

schon etwas flüssiger und weniger stockend wirkt als beim letzten Mal. Sie fühlen sich auch deutlich 

wohler in Ihrer Haut. 

So geht es weiter und nach einigen weiteren Versuchen stellen Sie fest, dass Sie das komplizierte 

Konzept ganz ohne Zuhilfenahme weiterer Hilfsmittel, Personen erklären können, die ganz zu Recht 

Schwierigkeiten damit haben, weil es nun einmal kein einfaches Konzept ist (wie vieles in der Statistik 

– daraus braucht man keinen Hehl zu machen – eben einfach nicht einfach oder intuitiv ist). Sie hören 

sich Sätze sagen wie „Ah ja, ich kann mir vorstellen, was dir dabei schwerfällt. Lass es mich einmal so 

erklären. Nehmen wir einmal an…“, sehen sich Hilfsskizzen und Diagramme zeichnen und Flächen 

unter Kurven kennzeichnen, und können ganz den Verständnisschwierigkeiten ihres Gegenübers 

zugewandt bleiben, weil sie sich nicht abwenden müssen, um sich erstmal selbst über einige Aspekte 

des Konzepts klar zu werden. Zugegeben: das ist ein sehr hohes Ziel und der Verfasser dieser Zeilen 

glaubt selbst nicht, diesem Ziel, außer in den aller einfachsten Fällen, auch nur annähernd gerecht 

werden zu können. 

Aber angenommen, Ihnen gelingt es. Wie würden Sie Ihre Kompetenz in diesem Fall 

einschätzen? Vermutlich höher als in allen zuvor beschriebenen Fällen. Und es wird für Ihr Gegenüber 

in diesem Fall dann sehr wahrscheinlich auch so aussehen, als würden Sie sehr viele Details oder 
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einzelne Arbeitsschritte auswendig wissen. Ihnen selbst wird aber klar sein, dass es sich dabei um kein 

bloßes lexikalisches Wissen handelt, sondern es Ihnen lediglich leicht fällt die nötigen Arbeitsschritte 

bei der Erläuterung des Konzepts zu reproduzieren. Gerade weil Sie es grundlegend verstanden haben, 

brauchen Sie sich nicht darum zu bemühen, etwas „auswendig“ zu behalten. Es ist Ihre Expertise, die 

wie von Geisterhand dafür sorgt, dass grundlegende Zusammenhänge wie automatisch aus den Tiefen 

Ihres Langzeitgedächtnisses hervorkommen, wenn Sie sie gerade brauchen. 

Ein entsprechend fundiertes Verständnis setzt aber u.a. viel Übung und Wiederholung der 

Inhalte voraus. Dafür soll die Lehrveranstaltung inklusive der Closed-Book Klausur eine kleine 

Anschubhilfe leisten. Lernen und üben muss aber tatsächlich jede:r selbst (auch wenn Lerngruppen – 

wie hoffentlich auch die jeweiligen Kleingruppen in der Lehrveranstaltung – dafür sehr gute 

Motivationshilfen sein können). 

Zusammengefasst heißt das, dass die intensive Beschäftigung mit den Übungen, die in diesem 

Dokument gesammelt vorliegen, die Bildung eines solchen grundlegenden Verständnisses für die 

Anwendung grundlegender statistischer Verfahren ermöglichen sollen. In den seltensten Fällen werden 

diese grundlegenden Verfahren ausreichen, um konkrete wissenschaftliche Fragestellungen (statistisch) 

zu erhellen. Dazu werden häufig Verfahren notwendig sein, die weit über die hier behandelten 

hinausgehen, in manchen Fällen überhaupt erst entwickelt werden müssen. Ein grundlegendes 

Verständnis für die hier behandelten Grundlagen soll es Ihnen aber ermöglichen, genau das tun zu 

können, nämlich weit über das hinauszugehen, was Sie hier beschrieben vorfinden. Das Dokument soll 

Ihnen sozusagen dabei helfen – frei nach Wittgenstein (2003) – die Leiter wegwerfen zu können, 

nachdem Sie über sie hinausgestiegen sind. Mit dieser Intention wurde es jedenfalls erstellt. Und falls 

Ihnen dieses Dokument in der Tat dabei helfen kann, hat es seinen Zweck auch mehr als erfüllt. 

Forschungsgeleitete Lehre 

Lehrveranstaltungen, die der Einführung und Einübung in die Anwendung statistischer 

Verfahren dienen, haben häufig mit einer recht hohen Hemmschwelle für die entsprechenden 

Lerninhalte, gerade unter Studienanfänger:innen zu kämpfen. So entscheiden sich die wenigsten 

Studierenden in den Sozial- oder Humanwissenschaften wohl für ihr Studium, weil sie sich besonders 
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gerne mit statistischen Fragestellungen auseinandersetzen. Zwar wird den Studierenden dann erzählt, 

dass statistische Grundkenntnisse essenziell sind, um später in der Praxis die Ergebnisse 

wissenschaftlicher Studien verstehen, interpretieren und bewerten zu können. Dazu gehört die Fähigkeit 

zur Beurteilung, ob sich Ergebnisse wissenschaftlicher Studien beispielsweise erfolgreich in 

Psychotherapie, Erziehungs- oder Unterrichtskontexten oder in einem Unternehmen oder einer 

Organisation umsetzen lassen, sowie die Fähigkeit die Wirksamkeit entsprechender Interventionen 

realistisch einschätzen zu können. Die selbständige, kritische Auseinandersetzung mit 

Studienergebnissen soll schließlich eine realistische, professionelle Einschätzung der Vielzahl an 

Ergebnissen ermöglichen, um hochwertige von schlechten Ergebnissen unterscheiden zu können, und 

nicht alles glauben zu müssen, was von irgendjemandem publiziert wurde, sondern entsprechende 

Veröffentlichungen selbst auf Stichhaltigkeit prüfen zu können. 

In der Tat haben Vorlesende damit völlig recht: zu all dem können fundierte statistische 

Grundkenntnisse selbstverständlich einen wesentlichen Beitrag leisten. Allerdings besteht für 

Studienanfänger:innen und der beschworenen Nützlichkeit der Lerninhalte in der späteren Berufspraxis 

doch meist noch eine gehörige Distanz, die die Ernsthaftigkeit der Auseinandersetzung mit dem 

Lernmaterial zumindest erschweren kann. Dies kann sich etwa darin äußern, dass der Nutzen der 

Auseinandersetzung mit statistischen Inhalten bezweifelt wird. Manchmal wird dieser zusätzlich 

dahingehend in Frage gestellt, dass jemand „doch sowieso klinischer Psychologie“ oder hauptsächlich 

in einem sehr angewandten Bereich tätig werden wolle, in welchem man sehr selten mit 

wissenschaftlicher Originalliteratur zu tun habe. Von der Haltbarkeit der impliziten Unterstellungen, die 

in diesen Beispielen eventuell einzelnen Berufsgruppen gemacht werden, einmal abgesehen, werden die 

Lerninhalte auf Studierendenseite in diesen Fällen eben dennoch manchmal als abstrakt, praxisfern, oder 

als bloße akademische und „eigentlich“ unnötige Hürde erlebt. Um die intrinsische Motivation der 

entsprechenden Studierenden bei der Aneignung dieser Inhalte ist es dann verständlicherweise schlecht 

bestellt. Auch die eigene Motivation und Begeisterung der Lehrperson für das Lernmaterial kann dann 

in diesen Fällen nur begrenzt Abhilfe schaffen (ein bisschen kann sie das aber mit Sicherheit). 

Zu erwarten, dass alle Studierenden mit der nötigen Weitsicht oder mit der nötigen Kreativität, 

um selbst motivierende Sinnzusammenhänge zwischen Lerninhalten und persönlichen Zielen des 
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(beruflichen) Werdegangs herstellen zu können, in die je eigene Lehrveranstaltung kommen, ist naiv 

und wenig zielführend. Den Studierenden schlichtweg zu sagen, dass etwas „so und so sei (und wer das 

nicht verstehe sei selbst schuld)“ ist mindestens genauso naiv und didaktisch fragwürdig. Nur weil eine 

Lehrperson einem Lernenden etwas sagt, ist das noch lange nicht gelernt; davon abgesehen, dass das 

fraglose Übernehmen von Ausgesprochenem sowieso nicht Ziel akademischer Bildung sein kann 

(jedenfalls nicht im Sinne eines Leitbilds humanistischer Bildung). 

Was hingegen durchaus helfen kann, die inhaltliche Relevanz der Lerninhalte hervorzuheben, 

ist, genau diese Relevanz anhand konkreter Beispiele in den Unterricht hereinzuholen und auf diese 

Weise zu etwas Erlebbarem zu machen. Wenn schon behauptet wird, dass statistische Grundkenntnisse 

so wesentlich für die Bewertung sozialwissenschaftlicher Studienergebnisse sind, dann ist die wohl 

geradlinigste Art, diese Behauptung zu einer Erfahrungstatsache für Studierende zu machen, das 

gemeinsame Durchführen und anschließende Beurteilen einer solchen Studie. 

Damit der Fokus der Lehrveranstaltung auf den statistischen Inhalten bleiben kann und sich 

nicht mit allen anderen Aspekten des empirisch-experimentellen Forschens eingehend befassen muss 

(davon gibt es einige und zur angemessenen Einschätzung einer wissenschaftlichen Studie gehört 

deutlich mehr als ein bloßes statistisches Grundverständnis, siehe z.B. Huber, 2019), ist es dafür 

wünschenswert, wenn es sich bei einer solchen Studie um eine handelt, die mit relativ einfachen Mitteln 

durchgeführt werden kann. Beispiele für Studien dieser Art gibt es aber in der Geschichte der 

Sozialwissenschaften oder der Psychologie mehr als genug. Zwei Möglichkeiten bestehen etwa im 

Spatial-Cueing Paradigma aus der kognitiven Psychologie oder dem impliziten Assoziationstest aus der 

Sozialpsychologie. 

Beide Experimente lassen sich relativ einfach mit digitalen Hilfsmitteln wie etwa der Software 

PsychoPy implementieren und mit den Studierenden in einem Online-Versuch umsetzen. Beide 

Experimente beinhalten Innersubjektfaktoren, die die Behandlung statistischer Analysen für abhängige 

Stichproben für die Lehrveranstaltung erschließen. Vergleiche zwischen sozialen Geschlechtern 

erschließen den statistischen Vergleich unabhängiger Stichproben. Die Kombination aus beidem 

ermöglicht die Besprechung gemischter Designs im Rahmen von Varianzanalysen, die 
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Berücksichtigung von Kovariaten (etwa dem Alter) erschließt Fragestellungen im Rahmen allgemeiner 

linearer Modelle und insbesondere der linearen Regression. Insgesamt erlaubt also die Durchführung 

eines Experiments die Behandlung des gesamten Lernmaterials an Studienergebnissen, die mit den 

Studierenden selbst hervorgebracht wurden. Auf diese Weise wird nicht nur die Relevanz der 

statistischen Inhalte für die Beantwortung wissenschaftlicher Fragestellungen erlebbar, sondern auch 

(allgemein-)psychologische oder sozialwissenschaftliche Inhalte der konkreten Erfahrung zugänglich 

gemacht. Es wird klar, dass es sich bei wissenschaftlichen Erkenntnissen der Psychologie und der 

Sozialwissenschaften nicht um eine Sache von rein akademischem Interesse, sondern um 

Zusammenhänge bzw. Effekte handelt, die dem ganz realen, tagtäglichen Verhalten, Denken, Erleben, 

und Handeln von Menschen zugrunde liegen. 

Natürlich gibt es eine Vielzahl weiterer Experimente, die einen mindestens ebenso großen 

Mehrwert für die Durchführung einer entsprechenden Lehrveranstaltung bieten können. Beispielsweise 

können auch moderne experimentelle Ergebnisse, die eine einfache Implementierung und Durchführung 

im Rahmen der Lehrveranstaltung zulassen, genutzt werden und im Kontext der Lehrveranstaltung auf 

ihre Stichhaltigkeit geprüft werden. Limitationen (etwa der Generalisierbarkeit oder aufgrund recht 

überschaubarer Stichprobengrößen) einer solchen Durchführung im Rahmen einer Lehrveranstaltung 

können dann gleich mit den Studierenden erarbeitet und diskutiert werden. Beispielsweise handelt es 

sich bei vielen bekannten Effekten in der Psychologie um relativ kleine Effekte, die als Unterschied in 

den Mittelwerten zweier Experimentalgruppen (oder einer sogenannten Experimental und einer 

Kontrollgruppe) erst bei hinreichend großen Stichproben mit hoher Wahrscheinlichkeit als statistisch 

signifikante Unterschiede zutage treten. Das heißt, je nach Lehrveranstaltung, kann man sich etwa in 

einer Übungsgruppe aus 50 Studierenden gar keine substantielle Bestätigung eines solchen Effekts 

erwarten. Gerade dies bietet aber eine exzellente Lerngelegenheit um oft schwer greifbare Konzepte wie 

statistische Teststärke, statistische Signifikanz, Fehlerarten erster und zweiter Art zu diskutieren und 

durch das konkrete Beispiel der gelebten Erfahrung zugänglich zu machen. 

Die Einbeziehung „echter“ Forschung auf diese oder ähnliche Weise kann unter diesen 

Gesichtspunkten nur empfohlen werden. Die Durchführung eines Experiments im Rahmen einer für die 

Psychologie (ob aktuell oder zumindest in früheren Zeiten) tatsächlich relevanten Fragestellung und der 
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anschließenden statistischen Analyse der Ergebnisse durch die Studierenden selbst unter Anleitung der 

Lehrveranstaltungsleiter:innen lässt die Studierenden im Gegensatz die sonst als „abstrakt“ und 

praxisfern empfundene Anwendung statistischer Verfahren in einem wissenschaftlich bedeutsamen 

Sinnzusammenhang erfahren. Zugleich können die Ergebnisse des Experiments selbst einen 

wesentlichen Erkenntnisfortschritt durch ihre Einbettung in den Lernkontext darstellen. Gerade auf 

Studien im Bereich der pädagogischen Psychologie trifft dies im Besonderen zu. Ferner zeichnen sich 

psychologische Studien häufig durch ein hohes Maß an Kontextabhängigkeit aus. Das heißt, ob eine 

Studie im psychologischen Labor oder im Unterrichtsraum stattfindet, kann selbst ein Faktor sein, der 

einen bedeutsamen Einfluss auf die Studienergebnisse hat. Zumindest im Rahmen der statistischen 

Auswertung der Ergebnisse können die Studierenden somit zu aktiven Teilnehmer:innen am 

Forschungsprozess werden und bekommen Einblicke in Bedeutung und Limitationen statistischer 

Datenanalyse anhand konkreter Forschungsergebnisse. Damit steht dieser Aspekt der Durchführung der 

Untersuchung am Übergang zwischen forschungsmotivierter Lehre zu forschendem Lernen (Sonntag et 

al., 2017) und erlaubt damit Zugriff auf die Vorzüge beider Lehr-/Lernformen im Rahmen 

forschungsgeleiteter Lehre in der universitären Lehre (Huber, 2014; Rueß et al., 2016). 

Dabei ist aber noch einmal zu betonen, dass der Einsatz einer experimentellen Studie innerhalb 

der Lehrveranstaltung zu diesem Zweck nicht auf Kosten der Einübung in die grundlegenden 

statistischen Verfahren gehen darf. Im Gegenteil soll dieser Einsatz dieser Einübung dienlich sein und 

für sie einen Mehrwert darstellen. Das kann dadurch erreicht bzw. gefördert werden, dass die konkrete 

Durchführung des Experiments auf die erste der oben genannten vier Hausübungen beschränkt bleibt. 

Das heißt, im Rahmen der ersten von vier Hausübungen führen die Studierenden jeweils selbständig ein 

Online-Experiment durch. Eventuell akquirieren die Studierenden auch noch zusätzlich jeweils ein oder 

zwei Freiwillige, die an dem Experiment teilnehmen; dies würde einen Vergleich einer Stichprobe 

innerhalb des Lernkontexts mit einer Stichprobe außerhalb des Lernkontexts erlauben. Die 

Dateneingabe bzw. das Datenmanagement kann dann mit den Studierenden anhand dieser eigens 

generierten Daten in einer der auf die Hausübung folgenden Einheiten besprochen und geübt werden. 

In den verbleibenden Hausübungen können die in den Präsenzeinheiten besprochenen grundlegenden 

Verfahren auf diese Daten angewandt werden. Die Besprechungen der Hausübungen werden so 
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schließlich zusätzlich auch zu einer Besprechung von Forschungsergebnissen. Fehler, Irrtümer, 

Missverständnisse und deren Bedeutung werden in einem inhaltlich sinnvollen Zusammenhang 

erlebbar, der nicht nur der Generierung von Punkten zur Beurteilung der Lehrveranstaltung dient. Das 

heißt, Studierende können erleben, welche Konsequenzen ein Fehler in der statistischen 

Datenauswertung für die Interpretation „echter“ Forschungsergebnisse hat, jedoch ohne den sicheren 

Rahmen einer Lehrveranstaltung dafür erst verlassen zu müssen. Das heißt, Fehler können hier gemacht 

und erlebt werden, um später in der eigenen Forschungspraxis dieselben Fehler nicht mehr machen zu 

müssen. Der Transfer in die eigene Praxis sollte durch die Einbettung in inhaltliche relevante Forschung 

innerhalb der Lehrveranstaltung zumindest gefördert werden. 

Insgesamt werden die didaktischen Ziele der Lehrveranstaltung dabei durch die Generierung 

und anschließende Verwendung dieser Forschungsdaten nicht nur nicht beeinträchtigt, sondern 

gefördert. Alle grundsätzlich in der Lehrveranstaltung behandelten Inhalte, inklusive derer Limitationen 

und Voraussetzungen, können im Rahmen der Hausübungen an diesen konkreten Forschungsdaten in 

einem psychologisch bedeutsamen Sinnzusammenhang illustriert und vertieft werden. Die 

Präsenzeinheiten, die weiterhin der Einführung und Einübung in die Anwendung dieser grundlegenden 

Verfahren dienen, bleiben davon unberührt. Auch die Beurteilung der individuellen Leistung ist 

gänzlich von den Ergebnissen des Experiments unabhängig. Die korrekte Anwendung statistischer 

Verfahren, auf der die individuelle Leistungsbeurteilung beruht, setzt schließlich kein bestimmtes 

Ergebnis des gemeinsam durchgeführten Experiments voraus. 

Ein alternativer Übungsmodus 

Eine weniger verspielte, aber vermutlich nicht minder effektive Möglichkeit eine Lehrveranstaltung zur 

Einübung in die Anwendung statistischer Verfahren zu gestalten, besteht darin, das Konzept des 

umgekehrten Klassenzimmers noch weiter zu intensivieren. Wie in der oben erläuterten 

Unterrichtsmethode hätten die Studierenden auch in diesem Fall wöchentlich den Arbeitsauftrag, ein 

jeweiliges Kapitel dieses Dokuments bis zur nächsten Präsenzübungseinheit vorzubereiten. Diese 

Vorbereitung würde allerdings ebenfalls die Übungsaufgaben des Kapitels (oder eine Auswahl 

derselben) umfassen. 
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Zu Beginn jeder Übungseinheit wäre dann von den Studierenden anzugeben, welche 

Übungsaufgaben sie so gründlich genug vorbereitet haben, dass sie ihre Lösung anderen präsentieren 

können (im Idealfall hätten sich natürlich alle auf alle Übungsaufgaben so eingehend vorbereitet, aber 

es dürfte jeder Person, die jemals gelehrt oder gelernt hat, klar sein, dass dieser Idealfall nur äußerst 

selten auch der Realität entspricht). Diese Lösungen würden dann in den Präsenzeinheiten von einzelnen 

Studierenden den anderen Studierenden präsentiert. Dabei hätten die Studierenden die zusätzliche 

Aufgabe, den übrigen Studierenden so weit Anleitung zu geben, dass diese die Übungsaufgabe 

begleitend zur Präsentation durchführen können. Dies umfasst insbesondere auch Studierende, die sich 

selbst nicht auf die jeweilige Aufgabe vorbereiten konnten. Die präsentierenden Studierenden 

übernehmen dabei also für einzelne Übungsaufgaben die Rolle der Lehrperson, was die Wirkung der 

Präsentation als Übung zum Lernen durch Lehren intensiviert (Duran, 2017). 

Gleichzeitig würde aufgrund der gehobenen Anforderungen während der Präsenzeinheit dieser 

Übungsmodus auch die Vorbereitungen der Studierenden auf die jeweiligen Präsenzeinheiten 

intensivieren. Dies würde in Folge das Lernen und Üben über das Semester hinweg über größere 

Zeiträume verteilen und auf diese Weise sowohl die Einübung in die Inhalte als auch die langfristige 

Behaltensleistung fördern (Ebersbach et al., 2022). 

Auch für diesen Übungsmodus müssten allerdings noch formale Beurteilungskriterien festgelegt 

werden. Über den Verlauf des Semesters könnte dazu etwa jede:r Studierende verpflichtet werden, 

mindestens zwei Übungsaufgaben in der beschriebenen Form zu präsentieren. Dabei wurde 

angenommen, dass ein Kurs 25 Studierende umfasst und pro Präsenzeinheit etwa 5 Übungsaufgaben 

erschöpfend behandelt werden könnten. Für eine erledigte Präsentation könnte dem:der jeweiligen 

Studierenden zudem 5 Beurteilungspunkte vergeben werden. 

Die übrigen 90 Punkte könnten durch Leistungen bei zwei Klausuren verdient werden. Für die 

erste Klausur etwa zur Hälfte des Semesters könnten etwa 40 Punkte, für die zweite Klausur am Ende 

des Semesters 50 Punkte vergeben werden. Bei positivem Abschluss der Lehrveranstaltung ab einer 

Leistung von 51 Punkten wäre so auch gewährleistet, dass die Lehrveranstaltung einschließlich der 

zweiten Klausur aktiv besucht werden muss. 
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Möglicher Ablauf einer prüfungsimmanenten Lehrveranstaltung auf Basis dieses Dokuments 

Ein möglicher Ablauf einer Lehrveranstaltung, der die bisherigen Erläuterungen zu diesem 

Dokument in sich integriert, ist im folgenden Ablaufschema zusammengefasst. Dieses Schema kann zur 

Gestaltung der eigenen Lehrveranstaltung herangezogen und nötigenfalls entsprechend angepasst 

werden. Die Themen der einzelnen Kapitel/Wochen können dem Inhaltsverzeichnis dieses Dokuments 

entnommen werden. 

Zeitpunkt/-raum Kapitel Aktivität 

Woche 1 1 Vorbesprechung und Klärung von Organisatorischem 

Wochen 1-2 n.a. Hausübung 1 (Online-Experiment) 

Wochen 1-2 2 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 2 2 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 2-3 3 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 3 3 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 3-4 4 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 4 4 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 4-5 5 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 5 5 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 5-6 2-5 Hausübung 2  

Wochen 5-6 6 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 6 6 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 6-7 7 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 7 7 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

(oder erste Klausur im Falle des Alternativmodus) 

Wochen 7-8 8 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 8 8 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 8-9 6-8 Hausübung 3 

Wochen 8-9 9 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 9 9 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 9-10 10 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 10 10 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 10-11 11 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 11 11 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Wochen 11-12 9-11 Hausübung 4 

Wochen 11-12 12 Selbständiges Erarbeiten des jeweiligen Kapitels 

Woche 12 12 Präsenzeinheit: Besprechung des jeweiligen Kapitels und Übungen 

Woche 13 2-12 Wiederholung, Fragestunde, Übungen aus allen Kapiteln (oder wie 

bisherige Einheiten im Falle des Alternativmodus) 

Wochen 14-15 2-12 Klausur bzw. Ersatzklausur 
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Eine weitere Möglichkeit der Verwendung dieses Dokuments für eine Lehrveranstaltung 

Eine weitere Möglichkeit dieses Dokument zur Gestaltung einer einsemestrigen Lehrveranstaltung zu 

verwenden, wurde im Studienjahr 2025/2026 an der Universität Graz konzipiert und erprobt. 

Grundsätzlich baut auch dieses Lehrveranstaltungskonzept auf dem Konzept des umgekehrten 

Klassenzimmers (Engl.: flipped classroom) auf. Das heißt, die Studierenden (und die Lehrpersonen) 

erarbeiten jeweils bis zur nächsten Präsenzeinheit ein Kapitel oder Teile eines oder mehrerer Kapitel 

aus diesem Dokument und die Präsenzeinheiten werden dann zur Wiederholung, Aktivierung, 

Vertiefung dieser Inhalte verwendet. Zur (Re-)Aktivierung der Lerninhalte werden jeweils zu Beginn 

der Präsenzeinheiten kurze Quiz durchgeführt, die neben einer Abschlussklausur zur Beurteilung 

herangezogen werden. Die Quiz sind dabei so konzipiert, dass Personen, die sich zur Vorbereitung auf 

die Präsenzeinheiten ernsthaft mit den Inhalten auseinandergesetzt haben, belohnt werden, und 

gleichzeitig die wesentlichen Durchführungsaspekte der Inhalte wiederholt bzw. reaktiviert werden. Die 

Erfahrungen während der Erprobung dieses Formats zeigten, dass so der Rest der Präsenzeinheiten 

tatsächlich für inhaltliche Verständnis- und Vertiefungsfragen und Üben der Inhalte an weiteren 

Beispielen freigemacht werden konnte und die bloße Bedienung der Software sowie rein technische 

Aspekte hingegen zu größten Teilen bereits in der selbständigen Vorbereitung erlernt werden konnten. 

Die Quiz waren ferner so konzipiert, dass die Durchführung nur die ersten 10-15 Minuten jeder Einheit 

in Anspruch nehmen sollte. Danach sollten die Lösungen der Quizfragen in etwa in 15-20 Minuten im 

Plenum erörtert werden. Das heißt, sowohl die Studierenden als auch die Lehrenden erhielten in jeder 

Einheit auch Rückmeldung darüber, welche Inhalte bereits gut verstanden werden konnten und welche 

Inhalte noch weiterer Vertiefung bedurften. Dieser Vertiefung bzw. Ergänzung durch weitere 

Übungsaufgaben diente dann die verbleibende Zeit jeder Einheit, in welcher Studierende (u.a. 

miteinander, zu zweit) ausgewählte Übungsaufgaben (aus dem jeweiligen Kapitel) bearbeiteten und sich 

in der Erstellung von Ergebnisberichten übten. Dies wurden von den Übungsleiter:innen begleitet, die 

bei individuellen Fragen und Schwierigkeiten unterstützten und Rückmeldung gaben (und bekamen). 

Ergaben sich Fragen bzw. Einsichten, die für alle wichtig erschienen, wurden diese im Plenum 

aufgegriffen und erörtert. 
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Die Erprobung dieses Kursformats ergab auch folgenden Vorschlag für eine Beurteilung bzw. 

Notenvergabe. Durch jedes Quiz zu Beginn jeder Präsenzeinheit konnten bis zu 5 Punkte verdient 

werden. Von insgesamt zehn durchgeführten Quiz (siehe auch den im Folgenden im Detail erläuterten 

Syllabus) wurden für jede:n Studierende:n die acht besten Quiz bis zur Klausur gewertet. Das heißt, bis 

zur Klausur konnten bis zu maximal 40 Punkte durch Teilnahme an den Quiz erarbeitet werden. Bei der 

Abschlussklausur konnten bis zu 60 Punkte erreicht werden. Studierenden, die insgesamt mindestens 51 

von 100 Punkten erreichten (d.h. aus Quiz und Klausur zusammen), wurden schließlich noch die Punkte 

aller Quiz, an welchen sie über die acht besten Quiz hinaus teilgenommen hatten, als Bonuspunkte auf 

die Gesamtpunkte angerechnet. Dadurch sollte ein zusätzlicher Anreiz geboten werden, über die ganze 

Lehrveranstaltung hinweg engagiert mitzuarbeiten. Die Teilnahme an den Quiz war ausschließlich in 

Präsenz zu Beginn jeder Einheit möglich. 

Bei den Quiz durften sämtliche Lehrveranstaltungsunterlagen verwendet werden (open book 

Format), bei der Abschlussklausur nicht (closed book Format). Dies hatte zum Hintergrund, dass die 

Quiz vorrangig Anreize zur Vorbereitung der Inhalte bieten, aber noch nicht deren Beherrschung 

erfordern sollten, da ja das Erlernen der Inhalte oftmals noch die gemeinsame Erläuterung und 

Vertiefung erforderte. Bei der Abschlussklausur hingegen ging es tatsächlich um die Prüfung der 

Fähigkeit sich die Inhalte aneignen und selbstständig ohne Zuhilfenahme weiterer als der erlaubten 

Hilfsmittel auch wieder zur Anwendung bringen zu können. Die Vorteile eines closed book Formats für 

diesen Zweck wurden bereits oben erläutert. 

Insgesamt gab es im gesamten Kurs demnach 100 Punkte zu verdienen. Ein Bestehen des Kurses 

erforderte mindestens 51 Punkte (davon maximal 40 durch Teilnahme an den Quiz). Eine Punktezahl 

von 50 Punkten oder weniger wurde daher mit der Note „Nicht genügend (5)“ bewertet. Bei einer 

Punktezahl von 51 bis 62 Punkten wurde die Note „Genügend (4)“ vergeben, ab 63 Punkten wurde die 

Note „Befriedigend (3)“ vergeben, ab 75 Punkten die Note „Gut (2)“, ab 87 Punkten die Note „Sehr gut 

(1)“. Es wurden lediglich ganz Punkte (d.h., keine Teilpunkte) vergeben. 

Im Folgenden ist tabellarisch ein möglicher Ablauf der Lehrveranstaltung im Detail illustriert. 

Bei der Erstellung wurde dabei von 15 Semesterwochen sowie des Ausfalls einer Woche (etwa durch 
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gesetzliche Feiertage). Mit einem nötigen Termin für eine Vorbesprechung sowie zwei Terminen für 

Klausur und Ersatzklausur (ausschließlich im Krankheitsfall oder anderweitig unaufschiebbarer 

Verhinderung) verbleiben elf Termine. Die ersten zehn dieser Termine sind den Inhalten dieses 

Dokuments gewidmet. Der verbleibende Termin (Woche vor der Abschlussklausur) ist einer 

Wiederholung der gesammelten Inhalte z.B. im Format einer Probe- oder Übungsklausur vorbehalten. 

Einheit 1 

Vorbesprechung /  

Organisatorisches 

Inhalte: 

• Erklärung Kursablauf, Quiz, Klausur, Beurteilung 

• Vorstellung SPSS 

• Bedienung der IT-Infrastruktur (lokale PCs, Netzlaufwerke, 

Verzeichnisse etc.) 

• Fernzugriff SPSS Demonstration 

• Herunterladen der Materialien (dieses Dokument und 

elektronisches Zusatzmaterial) 

Einheit 2 

Vorzubereiten: Kapitel 2 

(insb. S. 37-57) 

Einführung in SPSS 

Inhalte: 

• 10 Minuten Quiz (4 Punkte) 

• Danach: SPSS Fernzugriff eigenständig öffnen & 

Überprüfung durch LV-Leitung (1 Punkt) 

• Wiederholung/Vertiefung (Plenum): Bestandteile von SPSS; 

SPSS auf Englisch; Datensätze öffnen; Datensätze lesen; 

Datensätze zusammenfügen 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Andere Dateitypen (z.B. csv) einlesen) 

Einheit 3 

Vorzubereiten: Kapitel 3 

(insb. S. 63-101) 

Datenmanagement & 

Deskriptive Statistiken 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Umkodieren von 

Variablen; Index- oder Skalenbildung; Deskriptive 

Statistiken: Häufigkeiten, Maßzahlen, Boxplot; Kreuztabelle 

& Korrelation (Durchführung, ohne Hypothesentest); 

Formatierung von Ergebnisberichten (APA-Format) 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Kategorienbildung) 

Einheit 4 

Vorzubereiten: Kapitel 4 

(insb. S. 107-126) 

Parameterschätzung und 

Testen von Hypothesen 

über 

Populationsmittelwerte 

Inhalt: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Einstichproben t-Test; 

Cohens d; Stichprobenplanung (Einführung in G*Power) 

• Ausgewählte Übungsaufgaben aus dem Buch 
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Einheit 5 

Vorzubereiten: Kapitel 5 

(insb. S. 133-154) 

Schätzung und Testung von 

Mittelwerts-unterschieden 

zwischen zwei Gruppen 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): t-Test für abhängige 

Messungen; t-Test für unabhängige Messungen; Levenes 

Test; Stichprobenplanung; 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: t-Test für abhängige Messungen als 

Einstichproben t-Test mit Differenzvariable) 

Einheit 6 

Vorzubereiten: Kapitel 6 

(insb. S. 165-183) 

Einfaktorielle ANOVA 

ohne Messwiederholung 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Omnibustest; Paarweise 

post-hoc Vergleiche; 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Welchs ANOVA; Stichprobenplanung) 

• [Nicht behandelt (auch nicht vorzubereiten): A-priori 

Vergleiche (Kontraste)] 

Einheit 7 

Vorzubereiten: Kapitel 7 

(insb. S. 195-214) 

Zweifaktorielle ANOVA 

ohne Messwiederholung 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Omnibustests; 

Paarweise post-hoc Vergleiche 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Stichprobenplanung) 

Einheit 8 

Vorzubereiten: Kapitel 8 

(insb. S. 221-237) 

ANOVA mit 

Messwiederholung 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Einfaktorielle ANOVA 

mit Messwiederholung; Mauchlys Test für Sphärizität; 

Varianzanalyse mit gemischten Design 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Zweifaktorielle ANOVA mit 2 

Messwiederholungsfaktoren; Stichprobenplanung) 

Einheit 9 

Vorzubereiten: Kapitel 9 

(insb. S. 249-271) 

Einführung in die 

Regressionsanalyse: 

Einfache & Multiple 

Regression 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Einfache lineare 

Regression; Exkurs Zentrierung; Exkurs Korrelation; 

Multiple lineare Regression 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Exkurs Standardisierung) 
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Einheit 10 

Vorzubereiten: Kapitel 10 

(insb. S. 279-297) 

Regressionsdiagnostik & 

Effektstärken in der MLR 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Regressionsdiagnostik 

(Linearität, Normalverteilung, Homoskedastizität); 

Ausreißeranalyse (Cook’sche Distanz); Effektstärken (R2, 

Standardisiertes Regressionsgewicht); Stichprobenplanung 

• Ausgewählte Übungsaufgaben aus dem Buch 

• (Optional: Quadrierte Semipartialkorrelation) 

• [Nicht behandelt (auch nicht vorzubereiten): Kollinearität; 

Gerichtete azyklische Graphen (DAGs)] 

Einheit 11 

Vorzubereiten: Kapitel 11 

(insb. S. 321-325, 328-329, 

334-337) 

Diskrete Prädiktoren und 

Interaktion in der MLR 

(Moderation) 

Inhalte: 

• 10 Minuten Quiz (5 Punkte) 

• Wiederholung/Vertiefung (Plenum): Regressionsanalyse mit 

diskretem Prädiktor mit 2 Ausprägungen; Dummy-

Kodierung; Vergleich zu unabhängigem t-Test; 

Regressionsanalyse mit Interaktion zwischen 1 stetigen & 1 

dichotomen Prädiktor 

• Ausgewählte Übungsaufgaben aus dem Buch 

• [Nicht behandelt (auch nicht vorzubereiten): 

Regressionsanalyse mit diskretem Prädiktor mit mehr als 2 

Ausprägungen; Regressionsanalyse mit Interaktion zwischen 

2 diskreten Prädiktoren; Regressionsanalyse mit Interaktion 

zwischen 2 stetigen Prädiktoren] 

Einheit 12 Wiederholungseinheit, Fragestunde, Probe-/Übungsklausur 

Einheit 13 Schriftliche Klausur (90 Minuten) 

Einheit 14 Ersatzklausur 

Übungsaufgaben 

In diesem Kapitel ging es noch um keine konkreten statistischen Inhalte, sondern lediglich um 

den konzeptuellen Rahmen und die Verwendungsmöglichkeiten dieses Dokuments. Zur Illustration der 

künftigen Kapitel werden aber schon hier einige Aufgaben bereitgestellt, die einerseits grundlegende 

Begriffe in Erinnerung rufen sollen, und andererseits zur Illustration des Ablaufs des Übungsteils der 

Präsenzeinheiten einer entsprechenden Lehrveranstaltung im Rahmen einer Vorbesprechung in der 

ersten Präsenzeinheit verwendet werden können. Für letztere Verwendungsart wird empfohlen die erste 

Einheit auch gleich zur Bildung der Kleingruppen zu verwenden und dafür die nötige Zeit einzuräumen. 

Beispiel 1.1 

Es kommt immer wieder vor, dass Studierende im Rahmen ihrer Masterarbeit Aussagen wie die 

folgende treffen: „Es gibt einfach keine Quelle, in der etwas zu Voraussetzungen für Varianzanalysen 

steht, deshalb habe ich dann einfach diese Internetseite zitiert, weil dort steht, dass…“. Dann muss ich 
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(wenn ich wieder einmal in den Genuss gekommen bin bei der Betreuung einer Masterarbeit 

unterstützen zu dürfen) wieder lang und breit erklären, weshalb Internetquellen in vielen Fällen keine 

optimalen Quellen für eine wissenschaftliche Arbeit sind und dass solcherlei grundlegende statistische 

Inhalte durchaus in den meisten einschlägigen Statistiklehrbüchern zu finden sind. Um dieser 

Herausforderung zumindest etwas vorzubeugen, nun diese Frage: In welchem der folgenden Bücher 

könnten Sie bezüglich statistischer Grundkenntnisse fündig werden? 

(a) Eid, M., Gollwitzer, M. & Schmitt, M. (2017). Statistik und Forschungsmethoden (5. korrigierte 

Auflage). Beltz. Permalink für Ebook Version: https://permalink.obvsg.at/UGR/AC15718869. 

(b)  Bühner, M. & Ziegler, M. (2017) Statistik für Psychologen und Sozialwissenschaftler: 

Grundlagen und Umsetzung mit SPSS und R (2., aktualisierte und erweiterte Auflage). Pearson. 

(c) Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE publications. 

(d) Solche Bücher gibt es nicht. Hilfe bei statistischen Fragen bekommt man ausschließlich auf 

www.statistik-guru.de. 

Beispiel 1.2 

Ordnen sie die vier Begriffe „Merkmal“, „Merkmalsausprägung“, „Variable“, „Variablenwert“ den 

passenden Stellen (markiert mit „???“) in der folgenden Abbildung zu. 

 

Abbildung 1.1. Welche Begriffe gehören jeweils an die Stelle der „???“? 

 

https://permalink.obvsg.at/UGR/AC15718869
http://www.statistik-guru.de/
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Beispiel 1.3 

Was ist ein Synonym für welchen Begriff? 

Begriffe: Merkmalsträger:in, Merkmalsausprägung, Variablenwert. 

Synonyme: Untersuchungseinheit, Messwert, Merkmalswert, Untersuchungsobjekt. 

Beispiel 1.4 

Welche der folgenden Aussagen trifft/treffen zu? 

(a) Bei kategorialen Variablen kann es sich um Variablen mit Nominalskalenniveau oder 

Ordinalskalenniveau handeln. 

(b) Bei metrischen Variablen kann es sich um Variablen mit Absolutskalenniveau oder 

Ordinalskalenniveau handeln. 

(c) Bei metrischen Variablen kann es sich um Variablen mit Intervallskalenniveau, 

Verhältnisskalenniveau oder Absolutskalenniveau handeln. 

(d) Die Variablenwerte von Variablen mit Intervallskalenniveau können Zahlen oder Begriffe sein. 

Beispiel 1.5 

Geben Sie für jedes der folgenden Skalenniveaus mindestens ein Beispiel an: Nominalskalenniveau, 

Ordinalskalenniveau, Intervallskalenniveau, Verhältnisskalenniveau, Absolutskalenniveau. 

Beispiel 1.6 

Welche Aussage/n trifft/treffen in Bezug auf die Hypothese „Alkoholkonsum auf Partys steigert die 

Extraversion“ zu? 

(a) Alkoholkonsum ist hier die abhängige Variable (AV). 

(b) Alkoholkonsum ist hier die unabhängige Variable (UV). 

(c) Extraversion ist hier die abhängige Variable (AV). 

(d) Extraversion ist hier die unabhängige Variable (UV). 

Beispiel 1.7 

Geben Sie jeweils einige Beispiele für diskrete und kontinuierliche Variablen. 
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Beispiel 1.8 

Welche Aussage/n trifft/treffen zu? 

(a) Diskrete Variablen müssen kategorial sein. 

(b) Metrische Variablen müssen kontinuierlich sein. 

(c) Eine Variable kann gleichzeitig kategorial, diskret und abhängig sein. 

(d) Eine Variable kann gleichzeitig diskret, metrisch und abhängig sein. 

Beispiel 1.9 

Formulieren Sie eine Hypothese, die eine kategoriale, diskrete und abhängige Variable beinhält. 

Beispiel 1.10 

Formulieren Sie eine Hypothese, die eine metrische, diskrete und unabhängige Variable beinhält. 

Beispiel 1.11 

Beschreiben Sie in eigenen Worten den Begriff „Urliste“. 

Beispiel 1.12 

Wie kann die relative Häufigkeit ℎ(𝑥𝑗) der Messwertausprägung 𝑥𝑗 aus der absoluten Häufigkeit 𝐻(𝑥𝑗) 

und der Gesamtanzahl an Messwerten 𝑛 berechnet werden? 

(a) ℎ(𝑥𝑗) = 𝐻(𝑥𝑗) ∙ 𝑛. 

(b) ℎ(𝑥𝑗) = 𝐻(𝑥𝑗) − 𝑛. 

(c) ℎ(𝑥𝑗) = 𝐻(𝑥𝑗) + 𝑛. 

(d) ℎ(𝑥𝑗) = 𝐻(𝑥𝑗)/𝑛. 

Beispiel 1.13 

Gegeben ist die folgende Häufigkeitstabelle, bei der sinnvollerweise bereits alle aufgetretenen 

unterschiedlichen Messwertausprägungen in aufsteigender Reihenfolge angeordnet wurden (zur 

einfacheren Darstellung sind für diese Übung nur die ersten vier Zeilen der Tabelle angeführt). 

Anzahl Liegestü tz Absolüte Ha üfigkeit 
5 1 
9 2 
11 4 
12 1 
… … 

Bemerkung. 𝑛 = 50. 
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Berechnen Sie (a) die absolute kumulierte Häufigkeit sowie (b) die relative kumulierte Häufigkeit der 

viertkleinsten Messwertausprägung (d.h. der letzten in der Tabelle noch ersichtlichen 

Messwertausprägung). Beantworten Sie schließlich noch folgende Frage: (c) Welcher Anteil (in %) der 

getesteten Schüler:innen führte weniger als 10 Liegestütz durch? 

Beispiel 1.14 

Berechnen Sie die relative Häufigkeit sowie die absolute und die relative kumulierte Häufigkeit für die 

Häufigkeitstabelle des vorhergehenden Beispiels auch für die anderen dargestellten 

Messwertausprägungen und ergänzen Sie die Tabelle um zwei entsprechende Spalten. 

Beispiel 1.15 

Welche der folgenden Aussagen trifft/treffen zu? 

(a) (Mindestens) 50% der Merkmalsträger:innen haben einen Messwert, der kleiner oder gleich 

dem Median ist. 

(b) (Mindestens) 50% der Merkmalsträger:innen haben einen Messwert, der größer oder gleich dem 

Median ist. 

(c) Bei einer unimodalen, rechtsschiefen Verteilung befindet sich der Median üblicherweise links 

vom Mittelwert. 

(d) Bei einer unimodalen, rechtsschiefen Verteilung befindet sich der Median üblicherweise rechts 

vom Mittelwert. 

 



Kapitel 2: SPSS. Was ist das und wie kann ich es verwenden? 

37 

Kapitel 2 

SPSS. Was ist das und wie kann ich es verwenden? 

Nadine Schmer, Stefan E. Huber 

Zur Verarbeitung großer Datenmengen wird heutzutage auf die Hilfe digitaler Computer 

zurückgegriffen. Dazu wird häufig auf statistische Analysen spezialisierte Software wie das 

kommerzielle Programmpaket SPSS, das von IBM vertrieben wird, zurückgegriffen (Blanca et al., 

2018). Auch zur Lösung der in diesem Dokument gesammelten Übungsbeispiele wird hauptsächlich 

(aber nicht ausschließlich) die Software SPSS verwendet. Aus diesem Grund wird in diesem Kapitel 

eine Einführung in das Programm SPSS gegeben und die grundlegende Bedienung erläutert. 

SPSS? Was ist das? 

SPSS ist eine kommerzielle Software für statistische Datenanalyse. Die Abkürzung SPSS steht für 

“Statistical Package for the Social Sciences” und gehört zur IBM-Produktreihe unter dem Namen IBM 

SPSS Statistics. Sie wird nach wie vor häufig in Forschung, Bildung und kommerziellen Anwendungen 

eingesetzt (Blanca et al., 2018), insbesondere in den Sozialwissenschaften, aber auch in anderen 

Disziplinen wie Wirtschaft, Medizin, Marktforschung und der Psychologie. 

Die Funktionen von SPSS sind weitreichend, angefangen von Datenmanagement, statistischen 

Analysen, Visualisierung bis hin zu Prognosen. Außerdem gibt es Erweiterungen für spezielle 

Anwendungen wie Textanalyse und es ist integrierbar mit Programmiersprachen wie Python und R. 

Zudem ist SPSS benutzerfreundlich, recht intuitiv, und setzt keine Programmierkenntnisse voraus, was 

den Einstieg in die Verwendung der Software zur statistischen Datenanalyse erleichtert. 

Allerdings handelt es sich bei SPSS um eine kommerzielle Software. Das heißt, wer SPSS 

verwenden will, muss die Software bzw. eine Lizenz für ihre Verwendung erst käuflich erwerben. Damit 

Sie als Studierende diese zum Erlernen der Verwendung nicht gleich kaufen müssen, haben viele 

Universitäten entsprechende Lizenzen erstanden, die für Studierende einen Fernzugriff auf die Software 

von zu Hause aus ermöglichen. Für Studierende der Universität Graz (Stand: Februar, 2025) ist diese 

Möglichkeit im folgenden Abschnitt beschrieben. 
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Wie kann man SPSS (von zu Hause aus) verwenden? 

Ob für die Vorbereitung auf die Präsenzeinheiten einer entsprechenden Lehrveranstaltung, die 

Vorbereitung auf Prüfungen oder Klausuren, oder einfach zum Ausprobieren oder Festigen der eigenen 

Kenntnisse, in jedem Fall brauchen Sie als Studierender Zugriff auf SPSS. Die bequemste Möglichkeit 

mag es zwar vielleicht durchaus sein, sich eine relativ günstige Studierendenlizenz zu kaufen (viele 

Universitäten bieten eine solche Möglichkeit über entsprechende Software-Portale), aber zumindest an 

der Universität Graz (und auch vielen anderen Universitäten) ist das nicht notwendig. Als Studierende:r 

der Universität Graz können Sie SPSS an jedem beliebigen Computer mit Internetverbindung über den 

Terminalserver der Universität Graz nutzen. Dafür müssen Sie einen sogenannten Fernzugriff 

einrichten. Dieser wird im Folgenden für die Betriebssysteme MS Windows und Mac OS beschrieben. 

Fernzugriff auf SPSS für MS Windows 

Für den Fernzugriff zu SPSS wird eine VPN-Verbindung benötigt. Eine schrittweise Anleitung der 

Universität Graz zur Herstellung einer VPN-Verbindung finden Sie unter: https://static.uni-

graz.at/fileadmin/uni-it/docs/VPN_Netzzugang_unter_Windows_mit_AnyConnect_secure.pdf. 

Wenn ihr Computer mit dem VPN verbunden ist, besuchen Sie die Website der Universität Graz 

zu IT-Services für Studierende unter https://it.uni-graz.at/de/. Hier klicken Sie auf das Feld „Ich 

möchte“. Auf der sich öffnenden Seite finden Sie etwas weiter unten die Schaltfläche „SPSS virtuell 

verwenden“, siehe Abbildung 2.1. Betätigen Sie diese Schaltfläche. 

Durch Betätigung der Schaltfläche öffnet sich eine Seite, über die Sie Software über die 

Universität Graz beziehen können, und u.a. auch virtuelle Software wie SPSS starten können. Letzteres 

können Sie tun, indem Sie die Schaltfläche „virtuelle Software starten“ betätigen. 

Im nächsten Schritt werden Sie gebeten Ihre E-Mail-Adresse (jene, die Sie als Studierende:r der 

Universität Graz erhalten haben) und Ihr Benutzerkennwort (ebenfalls jenes für die Universität Graz) 

einzugeben. Diese Aufforderung ist in Abbildung 2.2 gezeigt. 

https://static.uni-graz.at/fileadmin/uni-it/docs/VPN_Netzzugang_unter_Windows_mit_AnyConnect_secure.pdf
https://static.uni-graz.at/fileadmin/uni-it/docs/VPN_Netzzugang_unter_Windows_mit_AnyConnect_secure.pdf
https://it.uni-graz.at/de/
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Abbildung 2.1. Website „uniIT – Services für Studierende“ der Universität Graz. Hier finden sich 

auch Zugang zur Software SPSS über den sogenannten Fernzugriff. 

 

Abbildung 2.2. Eingabeaufforderung (E-Mail und Kennwort) für den Zugriff auf virtuelle Software. 

Nachdem Sie sich angemeldet haben, können Sie zwischen zwei Ordnern auswählen. Wählen 

Sie hier den Ordner „SPSS“ und anschließend im sich öffnenden Unterordner die Anwendung „IBM 

SPSS Statistics“. Daraufhin wird eine ausführbare Datei (mit Endung „rdp“) heruntergeladen und 

typischerweise im Ordner „Downloads“ abgespeichert. Führen Sie diese Datei aus und klicken Sie 

anschließend auf die Schaltfläche „Verbinden“. Daraufhin werden Sie noch einmal gebeten Ihre E-Mail-
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Adresse sowie Ihr Kennwort einzugeben. Nach der Eingabe wird der Fernzugriff schließlich gestartet. 

Die Einrichtung desselben kann allerdings einige Momente dauern. Sobald der Fernzugriff eingerichtet 

ist, öffnet sich das Programm SPSS. 

Fernzugriff auf SPSS für Mac OS 

Auf Mac OS benötigen Sie eine VPN-Verbindung, um SPSS zu starten. Für eine Schritt-für-Schritt 

Anleitung zur Herstellung einer VPN-Verbindung öffnen sie den folgenden Link: https://it.uni-

graz.at/de/anleitungen/detail/?tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=

News&tx_news_pi1%5Bnews%5D=99932&cHash=a28185975f10ea776b23360eb7e8fa23. 

Wenn ihr Computer mit dem VPN verbunden ist, besuchen Sie die Website der Universität Graz 

zu IT-Services für Studierende unter https://it.uni-graz.at/de/. Hier klicken Sie auf das Feld für 

„Anleitungen“. Auf dieser Seite geben Sie „SPSS“ im Suchfeld ein und filtern Sie bei Betriebssystemen 

nach Mac OS wie in Abbildung 2.3 dargestellt. 

 

Abbildung 2.3. Suchen nach einer Anleitung für den Fernzugriff auf SPSS für MacOS. 

Die Suche sollte nur in einer Anleitung mit dem Titel „RDS (Remote Desktop Services) unter 

Mac OS“ resultieren. Wählen Sie diese Anleitung aus. Im sich öffnenden Fenster finden Sie einen Link 

zu einer ausführlichen Anleitung mit detaillierten Screenshots. Wählen Sie diese Anleitung aus und 

befolgen Sie sie Schritt für Schritt. Dabei kann es sein, dass die in der Anleitung verwendete 

Bezeichnung „Remote Services“ auf Ihrem System eventuell „Add Workspace“ heißt (siehe auch 

Abbildung 2.4). Im Laufe der Einrichtung des Fernzugriffs wird es auch für Mac OS (zweimal) nötig 

sein, Ihre Kenndaten (E-Mail-Adresse und Kennwort) für die Universität Graz einzugeben. 

https://it.uni-graz.at/de/
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Abbildung 2.4. Es kann sein, dass auf Ihrem System anstelle der Bezeichnung „Remote Resources“ (hier 

gezeigt) die Bezeichnung „Add Workspace“ verwendet wird. Lassen Sie sich davon nicht verunsichern 

und wählen Sie „Add Workspace“ aus. 

Nützliches im Zusammenhang mit dem Fernzugriff auf SPSS 

Beim nächsten Mal, wenn Sie Fernzugriff auf SPSS benötigen, ist es nicht mehr nötig alle oben 

beschriebenen Schritte durchzuführen. Sobald Sie eine VPN-Verbindung eingerichtet haben, können 

Sie normalerweise einfach die, wie oben beschrieben, heruntergeladene rdp-Datei ausführen und der 

Fernzugriff sollte gestartet werden. Falls Sie die Datei gelöscht haben oder der Fernzugriff wider 

Erwarten nicht gestartet wird, führen Sie einfach die oben beschriebenen Schritte erneut aus. 

Beim Fernzugriff auf SPSS kann es zudem eine Herausforderung sein, auf lokale Dateien am 

Computer zuzugreifen. Prinzipiell sollte dies möglich sein. Wenn Sie auf das Symbol zum Öffnen neuer 

Dateien in SPSS klicken, befinden Sie sich zwar in Ihrem Homeverzeichnis im Universitätsnetzwerk, 

Sie sollten aber beispielsweise den lokalen Ordner „Dokumente“ unter „Dieser PC\C auf 

<Gerätebezeichnung>\Users\<Benutzername>\Documents“ auffinden können. Analog sollte sich der 

Ordner „Downloads“ finden lassen. Sofern vorhanden, können die benötigten Dateien auch auf einen 

USB-Stick gespeichert werden, der sich jedenfalls unter den gelisteten, lokalen Laufwerken auffinden 

lassen sollte. 
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Zugriff auf SPSS in der Lehrveranstaltung „Anwendung statistischer Verfahren am Computer“ 

Die Präsenzeinheiten der Lehrveranstaltung „Anwendung statistischer Verfahren am Computer“ finden 

in Computerräumen statt, die mit Computern ausgestattet sind, auf denen eine lokale SPSS-Installation 

vorhanden ist. Das heißt, in den Präsenzeinheiten können Sie SPSS verwenden, indem Sie einfach in 

der Windows-Suchfunktion SPSS eingeben und das daraufhin aufscheinende Programm „IBM SPSS 

Statistics“ starten. 

Erstmalige Verwendung von SPSS 

Wenn Sie SPSS zum ersten Mal starten (und auch bei jedem weiteren Start, sofern Sie die Option nicht 

auswählen, dass Ihnen das Fenster nicht wieder angezeigt wird), werden Sie von einem Dialogfenster 

willkommen geheißen, in dem Sie u.a. die Option haben, ein neue (leere) Datendatei zu erzeugen oder 

kürzlich geöffnete Dateien wieder zu öffnen. Zudem finden Sie hier auch Links zu Hilfe- und 

Supportseiten oder auch Tutorials im Internet. 

 

Abbildung 2.5. Dialogfenster beim (erstmaligen) Start von SPSS. 



Kapitel 2: SPSS. Was ist das und wie kann ich es verwenden? 

43 

Falls Sie diese Funktionen nicht benötigen, können Sie dieses Fenster einfach schließen. 

Daraufhin haben Sie eine leere Datendatei im sogenannten Dateneditor vor sich auf dem Bildschirm. 

Der Dateneditor ist eines von drei wesentlichen Programmfenstern in SPSS. Bei den anderen beiden 

handelt es sich um die sogenannte Syntax und das Ausgabefenster. Jedes dieser Programmfenster ist 

auch mit einem eigenen entsprechenden Dateiformat verbunden, die jeweils durch eine eigene 

Dateiendung ausgezeichnet sind. SPSS-Datendateien, die sie im Dateneditor erstellen, öffnen, 

bearbeiten und speichern können, haben die Endung „.sav“. Syntaxdateien haben die Endung „.sps“. 

Ausgabedateien haben die Endung „.spv“. Keine Sorge, falls das alles noch sehr abstrakt klingt, zu 

Funktionalität und Verwendung der einzelnen Dateiformate bzw. Programmfenster kommen wir bald! 

Um sich aber einmal einen ersten Überblick über die einzelnen Fenster zu verschaffen, können Sie 

einfach einmal eine neue Syntaxdatei unter File >> New >> Syntax sowie eine neue Ausgabedatei unter 

File >> New >> Output öffnen. (Neue leere Dateien dieser beiden Arten werden Sie im Regelfall nur 

selten brauchen, wie wir unten noch sehen werden, aber um einmal ein bisschen mit der Software 

vertraut zu werden, schadet es nicht, sich einmal ein bisschen umzuschauen.) 

Womöglich haben Sie bemerkt, dass in der vorhergehenden Anleitung, um die beiden Fenster 

zu öffnen, die englische Sprache verwendet wurde. Da sehr viele Tutorials und Literatur, auf die Sie im 

Internet Zugriff haben, auf Englisch zur Verfügung stehen und es sich dabei um wesentlich mehr 

Ressourcen zur Unterstützung handelt als Sie auf Deutsch finden können, empfiehlt es sich SPSS gleich 

von Anfang an in englischer Sprache zu nutzen (es kann sein, dass über den Fernzugriff bereits die 

englische Sprachversion bereitgestellt wird). Daher empfiehlt es sich die Sprache gleich bei der ersten 

Verwendung umzustellen. Hierzu klicken Sie oben links in der Ecke auf „Bearbeiten“ und dann auf das 

unterste Feld „Optionen“. Dann wählen Sie im Reiter Sprache, sowohl für die Ausgabe als auch für die 

Benutzerschnittstelle Englisch aus. 

Trotz der Umstellung der Sprache auf Englisch bleibt allerdings das Dezimaltrennzeichen in 

SPSS bei Ein- und Ausgabe ein Komma, in der Syntax wird es hingegen als Punkt dargestellt. In der 

englischsprachigen Literatur ist es allerdings üblich als Dezimaltrennzeichen (fast) durchwegs einen 

Punkt zu verwenden, während ein Komma ein sogenanntes Tausendertrennzeichen darstellen kann. Um 

etwaige Verwirrungen diesbezüglich gleich von Anfang an zu vermeiden, empfiehlt es sich auch diese 
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Einstellung des Dezimaltrennzeichens gleich zu Beginn zu vereinheitlichen. Dazu kann gleich das 

bereits geöffnete Syntaxfenster genutzt werden. 

Wählen Sie dazu dieses Fenster aus und schreiben Sie in die erste Zeile (ohne den 

Anführungszeichen): „*Set locale to English (dot as decimal separator).“ Achten Sie dabei darauf, den 

Stern am Beginn und den Punkt am Ende nicht zu vergessen. Schreiben Sie dann in die nächste Zeile 

„set locale 'en_us'.“. Beachten Sie hierbei, dass Sie wiederum den Punkt am Ende sowie die 

eingestrichenen Anführungszeichen innerhalb der Zeichenfolge nicht vergessen. Ihr Syntaxfenster sollte 

dann so wie in Abbildung 2.6 links aussehen. Markieren Sie nun die beiden Zeilen (prinzipiell genügt 

es die zweite Zeile zu markieren) und klicken Sie auf die grüne „Abspielen“-Taste wie in Abbildung 2.6 

rechts dargestellt. Daraufhin werden die Kommandos in den markierten Zeilen ausgeführt und falls Sie 

dieser Anleitung bis hierher gefolgt sind: Glückwunsch, Sie haben gerade Ihr erstes eigenes Programm 

in der SPSS-eigenen Programmiersprache SPSS Syntax geschrieben! Was Sie da genau gemacht haben, 

wird im nächsten Abschnitt noch etwas weiter erläutert. Sie können aber dieses Erfolgserlebnis jetzt 

sofort damit feiern, dass Sie Ihr erstes Programm im Syntax-Fenster unter File >> Save As… an einem 

Speicherort und mit einem Dateinamen Ihrer Wahl abspeichern. Wir werden im Rahmen der Übungen 

nur selten (wenn überhaupt) direkt etwas im Syntax-Editor programmieren, aber wir werden diesen 

häufig nutzen, um unsere Analysen zu dokumentieren. Darauf wird im nächsten Kapitel noch genauer 

eingegangen. 

 

Abbildung 2.6. Ein erstes Programm in der SPSS-eigenen Programmiersprache! 
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SPSS Syntax und Syntaxdateien 

Der Syntax-Editor wird zum Erstellen und Bearbeiten von Programmen in der SPSS-eigenen 

Programmiersprache SPSS Syntax verwendet. Prinzipiell kann jede Analyse (und überhaupt alles, was 

man mit SPSS machen kann) durch Eingabe entsprechender Kommandos und deren Ausführung im 

Syntax-Editor durchgeführt werden. 

Der Syntax-Editor ist wie folgt aufgebaut. Links befindet sich der Navigationsbereich, in dem 

zwischen den einzelnen bereits eingegebenen Syntax-Befehlen hin- und hergesprungen werden kann. 

Rechts ist der Bereich, in dem die SPSS-Kommandos eigegeben werden können.  

Sämtliche SPSS-Kommandos müssen mit einem Punkt („.“) abgeschlossen werden. Zeilen, die 

mit einem Stern („*“) beginnen, werden von SPSS als Kommentare interpretiert und bei der Ausführung 

ignoriert. Kommentare dienen lediglich menschlichen Nutzer:innen, um den Programmcode zu 

erläutern. Auch bei Kommentaren zeigt ein Punkt am Ende SPSS an, dass der Kommentar zu Ende ist. 

Alternativ kann nach einem Kommentar auch eine Leerzeile gelassen werden. Durch Klicken auf das 

grüne „Abspielen“-Symbol werden markierte Zeilen ausgeführt. Kommentare werden dabei ignoriert 

(und können also einfach mitmarkiert werden). 

Über Edit >> Options gelangen Sie zu den Optionen und können im Reiter Syntax Editor (siehe 

Abbildung 2.7) u.a. einstellen, welche Farbkodierung Sie für verschiedene Teile der Syntax bevorzugen. 

Hier wird empfohlen die Farbe zur Darstellung von Kommentaren auf eine sichtbarere als hellgrau zu 

ändern, welche als Standard eingestellt ist. 

Zudem wird zwecks besserer Lesbarkeit auch empfohlen, den im Syntax-Editor verwendeten 

Font unter View >> Fonts… auf Courier New zu ändern. 

SPSS Ausgabefenster 

Im sog. SPSS-Viewer (Ausgabefenster) werden Ergebnisse in tabellarischer oder grafischer Form 

ausgegeben. Sämtliche Tabellen und Grafiken sind prinzipiell bearbeitbar. Dieses Fenster werden wir 

später bei den einzelnen Analysen noch im Detail besprechen. Aktuell sollte es noch sehr leer aussehen, 

da wir noch keine Datenverarbeitungen durchgeführt haben, bei denen etwas (z.B. Resultate von 

Signifikanztests) auszugeben war. 
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Abbildung 2.7. Einstellungen für den Syntax-Editor. Der rote Pfeil zeigt an, wo die Farbe geändert 

werden kann, in der Kommentare dargestellt werden. 

Der SPSS Daten-Editor 

Der Daten-Editor öffnet sich per Voreinstellung mit einer leeren Datendatei, sobald Sie SPSS öffnen 

(und dabei nicht bereits eine vorhandene Datendatei ausgewählt haben). Im Daten-Editor können 

Datendateien erstellt, geöffnet, eingesehen, Daten geändert und Variablendefinitionen vorgenommen 

werden. Sie können mit SPSS mehrere Datendateien gleichzeitig öffnen. Dabei ist zu beachten, dass 

SPSS immer nur mit dem aktuell aktiven Datensatz arbeitet. Dieser ist an einem (sehr) kleinen roten 

Plus-Symbol über dem SPSS-Icon (in der oberen linken Ecke) zu erkennen, siehe Abbildung 2.8. 

Der Daten-Editor enthält wiederum zwei Modi zur Ansicht von Daten: die sog. Datenansicht 

und die Variablenansicht. Zwischen diesen beiden Ansichten können mit den beiden Schaltflächen unten 

links hin- und herwechseln, siehe Abbildung 2.8. Ab Version 30 von SPSS gibt es auch noch einen 

Übersichtsmodus, auf den hier nicht weiter eingegangen wird. 

Variablenansicht. In der Variablenansicht werden die Eigenschaften der Variablen, die im 

Datensatz enthalten sind, dargestellt bzw. definiert (siehe nächster Abschnitt). In unserem Fall ist die 

Variablenansicht noch leer (Abbildung 2.8), da noch keine Daten eingegeben wurden bzw. die Variablen 

noch nicht definiert sind. 
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Abbildung 2.8. Eine geöffnete, wenn auch noch sehr übersichtliche Datendatei. Dass dies die aktuell 

aktive Datendatei ist, erkennt man am roten Plus-Symbol oben links. Aktuell befinden wir uns in der 

Variablenansicht (dunkel hinterlegter Hintergrund). Zur Datenansicht können wir mit der 

entsprechenden Schaltfläche unten links umschalten. 

Datenansicht. Abbildung 2.9 zeigt die Datenansicht unserer noch leeren Datendatei. Jede Zeile 

ist jeweils ein Fall (oder eine Beobachtung oder eine Person). Jede Spalte ist jeweils eine Variable (oder 

ein Messwert). Das bedeutet, alle Informationen zu einem Fall (einer Person) befinden sich in derselben 

Zeile und die Variablenausprägungen aller Personen in Bezug auf eine Variable befinden sich jeweils 

in derselben Spalte. 

Dateneingabe 

Variablen in SPSS können entweder händisch in der Datenansicht eingetippt oder aus anderen 

Datenquellen (Textdateien, MS Excel-Dateien, Datenbanken, etc.) importiert werden. Aber ganz gleich 

woher man diese Daten hat, in jedem Fall ist es wichtig diese Variablen zu definieren und deren 

Eigenschaften festzulegen.  

Dazu benötigt man die Variablenansicht. Zur Erklärung der möglichen Eigenschaften werden 

hier die in Abbildung 2.10 bereits vordefinierten Variablen verwendet. Insgesamt liegen 6 Variablen 

vor. Jede Variable wird mit ihren Eigenschaften entlang einer Zeile dargestellt. Zur Einsicht oder 

Änderung der Eigenschaften klickt man mit der Maus (links) in die jeweilige Zelle in der 

Variablenansicht. 
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Abbildung 2.9. Eine ebenfalls noch sehr übersichtliche Datenansicht. 

Im Folgenden sind die einzelnen Variableneigenschaften kurz erläutert. Vorweg: Sie müssen 

die Details dieser Erläuterungen nicht auswendig lernen. Wir werden im Rahmen dieses Übungsbuchs 

noch mit sehr vielen Datendateien zu tun haben, so dass Ihnen die wichtigsten Eigenschaften alleine 

durch die Übung geläufig werden werden. Es schadet aber nicht, einige Details hier in einer Übersicht 

versammelt zu haben. 

 

Abbildung 2.10. Beispiel für eine Datendatei in der Variablenansicht. 

Name. In der ersten Spalte der Variablenansicht steht der Variablenname. Beim Benennen von 

Variablen sollte man allerdings einige Regeln beachten. Der Name der Variable muss eindeutig sein; 

doppelt vorkommende Namen innerhalb einer Datendatei sind nicht zulässig. Variablennamen müssen 

mit einem Buchstaben beginnen. Es gibt allerdings einige SPSS-interne Ausnahmen, die mit einem „@“, 
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„#“, oder „$“ beginnen können. Dabei handelt es sich um Variablen, die von SPSS (etwa im Rahmen 

bestimmter Verarbeitungsschritte) erzeugt wurden. Variablennamen dürfen keine Leerzeichen 

enthalten. Variablennamen dürfen nicht länger als 64 Zeichen sein. Variablennamen sollten nicht mit 

Punkt oder Unterstrich enden (aber innerhalb eines Namens ist das durchaus in Ordnung). Reservierte 

Schlüsselwörter (z.B. „ALL“, „AND“, „BY“, „EQ“, „GE“, „GT“, „LE“, „LT“, „NE“, „NOT“, „OR“, 

„TO“, „WITH“) können nicht als Namen verwendet werden. 

Type. In der zweiten Spalte wird die Art einer Variablen definiert. Hierbei kann zwischen 9 

verschieden Typen gewählt werden. Am häufigsten werden die beiden Arten Numeric (Dezimalzahl) 

und String (Zeichenkette bzw. Symbolfolge) verwendet. Die übrigen Variablentypen können bei Bedarf 

in der Dokumentation unter https://www.ibm.com/docs/sv/spss-statistics/beta?topic=tab-variable-type 

nachgelesen werden. 

Width. Width bezeichnet die Variablenbreite; d.h. die Anzahl der Zeichen, die die Ausprägungen 

der Variablen maximal umfassen darf. Eine Variablenbreite von 10 heißt demnach, dass in der 

Datenansicht eine Variable maximal 10 Zeichen lang sein darf. 

Decimals. Diese Spalte gibt an, wie viele Dezimalstellen eine Variable hat. In diesem Beispiel 

(Abbildung 2.13) haben alle Variablen 0 Dezimalstellen, es handelt sich also ausschließlich um ganze 

Zahlen ohne Nachkommastellen. 

Label. Das Label einer Variablen ist eine zentrale Eigenschaft. Sie dient der Beschreibung der 

Variablen und die Definition dieses Labels erleichtert die weitere Arbeit mit den Daten ungemein. 

Variablenlabel können Leerzeichen und reservierte Zeichen enthalten, die in Variablennamen nicht 

zulässig sind. Bei Fragebogendaten wird beispielsweise empfohlen unter Label den exakten Wortlaut 

des jeweiligen Items einzugeben. So kann man später bei der Datenanalyse jederzeit schnell 

nachschauen, was genau mit einem bestimmten Item erfragt wurde (z.B. „Naturschutz ist mir sehr 

wichtig“ bei einem Fragebogen zur Naturschutzakzeptanz). 

Values. Sie können jedem Wert einer Variablen ein beschreibendes Wertelabel (also eine 

Beschreibung) zuordnen. Das wird hauptsächlich verwendet, wenn die Datendatei numerische Codes 

zur Darstellung nominaler Kategorien benutzt (zum Beispiel die Zahlen 1 und 2 für „weiblich“ und 

https://www.ibm.com/docs/sv/spss-statistics/beta?topic=tab-variable-type
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„männlich“). Einzelne Werte und deren Labels können in dem Fenster, das sich nach Klicken auf die 

entsprechende Zelle unter Values öffnet, mit dem Plus-Symbol hinzugefügt werden und mit dem Kreuz-

Symbol wieder entfernt werden, siehe Abbildung 2.11. 

 

Abbildung 2.11. Hinzufügen von Werten für kategoriale Variablen. 

Missing. Hier können bestimmte Datenwerte als benutzerdefiniert fehlende Werte deklariert 

werden. Datenwerte, die als benutzerdefiniert fehlende Werte angegeben sind, werden zur 

Sonderbehandlung gekennzeichnet und von den meisten Berechnungen ausgeschlossen. Man kann 

entweder bis zu drei diskrete (einzelne) fehlende Werte (z.B. 99 oder -1), einen Bereich fehlender Werte 

oder einen Bereich und einen diskreten Wert eingeben. 

Columns. Diese Eigenschaft bezeichnet die Spaltenbreite; dabei handelt sich ausschließlich um 

eine Sache der visuellen Darstellung der Datenansicht. Unabhängig davon, wie viele Zeichen eine 

Variablenausprägung maximal umfassen darf (unter Width), kann die Breite der Spalte größer oder 

kleiner sein. 

Align. Auch diese Einstellung dient bloß der visuellen Darstellung in der Datenansicht. Hier 

kann ausgewählt werden, ob Daten links, rechts oder mittig im Feld ausgerichtet sein sollen. 

Measure. Die Eigenschaft Measure bzw. Skalenniveau hat zentralen Charakter für die 

Variablendefinition. Hier ist das Skalenniveau der Variablen einzustellen, also ob eine Variable metrisch 
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(scale), ordinal oder nominal skaliert ist. Im Gegensatz zur grundsätzlichen Bedeutung des Begriffs in 

der Statistik fasst SPSS mit dem Begriff scale Intervallskalenniveau, Verhältnisskalenniveau, und 

Absolutskalenniveau in eine Kategorie zusammen. Entscheidend ist also lediglich, ob eine Variable 

mindestens Intervallskalenniveau aufweist. 

Role. Manche Dialogfelder unterstützen vordefinierte Rollen, die zur Vorauswahl von Variablen 

zur Analyse verwendet werden können. Wenn Sie eines dieser Dialogfelder öffnen, werden in der/den 

Zielliste/n automatisch Variablen angezeigt, die die Rollenbedingungen erfüllen. Standardmäßig wird 

allen Variablen die Rolle Input zugewiesen. Manche Autoren (Bühner & Ziegler, 2017) empfehlen, für 

alle Variablen die Rolle ‚Both‘ zu vergeben, da jede Variable so gut wie immer sowohl als UV als auch 

als AV fungieren kann. 

Existierende Datendateien öffnen 

SPSS-Datendateien. Beim Öffnen von Dateien ist zu beachten, dass man über das Ordner-Symbol 

(Abbildung 2.12) in den Menüs der Programmfenster nur denselben Dateityp öffnen kann, der dem 

gerade verwendeten Programmfenster entspricht. Das bedeutet, dass über das Ordnersymbol im 

Dateneditor nur andere Datendateien geöffnet werden können, über das Ordnersymbol im Syntax-Editor 

nur Syntax-Dateien und über das Ordner-Symbol im Ausgabefenster nur Ausgabedateien. Über File >> 

Open lassen sich aber aus jedem Programmfenster alle anderen SPSS-Dateitypen öffnen, indem man 

auswählt, welchen Dateityp man öffnen möchte. 

Externe Dateitypen. Mit SPSS lassen sich aber auch Daten einlesen, die in anderen Dateiformaten 

vorliegen. Um beispielsweise MS Excel Dateien einlesen zu können, können Sie wie folgt vorgehen. 

Klicken Sie zuerst auf File >> Open >> Data… und wählen Sie anschließend in dem sich öffnenden 

Fenster unter Files of type „Excel: (*.xls, *.xlsx, *xlsm)“ aus. Danach werden ihnen nur mehr Excel 

Dateien angezeigt. Wählen Sie die gewünschte Datei und klicken Sie auf Open. Nach dem Importieren 

ist es meist noch klug, die Eigenschaften der Daten in der Variablenansicht zu überprüfen und falls nötig 

anzupassen. Zudem empfiehlt sich diese neue und gegebenenfalls ergänzte SPSS-Datendatei dann 

zusätzlich zur existierenden MS Excel Datei abzuspeichern, um Sie für später (und für eine in jedem 

Fall empfehlenswerte Dokumentation) verfügbar zu haben. 
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Abbildung 2.12. Öffnen von Dateien mittels des Ordner-Symbols. 

Auch CSV-Dateien können mit dem gleichen Prinzip in SPSS importiert werden. Bei CSV-

Dateien (CSV steht für „comma separated values“) handelt es sich um ein Dateiformat, dem sie in der 

Praxis statistischer Datenverarbeitung recht häufig begegnen können, weil es sich dabei um ein sehr 

einfaches (und damit auch robustes, d.h. eher wenig fehleranfälliges) Dateiformat handelt. Um eine 

solche Datei in SPSS zu importieren, müssen Sie bei „Files of type“ die Option „CSV (*.csv)“ 

auswählen. Bei diesem Dateientyp öffnet sich nach Auswahl der Datei ein weiteres Fenster (ein sog. 

Import-Assistent, d.h. ein kleines Programm, das uns beim Einlesen der Daten aus diesem Dateiformat 

hilft). Als erstes wird abgefragt, ob die Datei ein vordefiniertes Design aufweist. Falls wir über kein 

vorgefertigtes Design verfügen, wählen wir hier „No“ und klicken dann auf „Next“. Danach wird 

abgefragt, ob Variablenwerte mit einem definierten Symbol (z.B. einem Komma) oder durch einen 

bestimmten Abstand (z.B. vier Leerzeichen) getrennt sind. Zudem ist es wichtig zu wissen, ob die erste 

Zeile Variablenbezeichnungen enthält oder die Datei sofort mit einer Auflistung von Variablenwerten 

beginnt. Schließlich muss das verwendete Dezimaltrennzeichen eingegeben werden. Haben wir alle 

nötigen Informationen angegeben, können wir wieder auf „Next“ klicken. Es folgen einige weitere 

Fragen. In welcher Zeile beginnt die Auflistung der Variablenwerte? Entspricht jede Zeile einem Fall 

(z.B. einer Person oder einer Beobachtung aller Messwerte für eine Person)? Wollen wir nur einen 

bestimmten Teil der Datendatei einlesen? Im nächsten Fenster wählen wir das Trennzeichen zwischen 

einzelnen Variablenwerten aus und geben an wie Zeichenfolgen gekennzeichnet sind (etwa durch ein- 

oder zweigestrichene Anführungszeichen). Hier können wir auch angeben, ob Zeichenfolgen, die 

Leerzeichen ganz zu Beginn oder ganz am Ende beinhalten, um diese Leerzeichen bereinigt werden 
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sollen. Im nächsten Fenster können wir noch neue Variablennamen wählen, falls wir das möchten. Im 

anschließenden Fenster können wir dann entscheiden, ob wir diese Prozedur als Design abspeichern 

wollen, um sie beim nächsten Mal, wenn wir eine Datei dieses Formats einlesen, nicht mehr durchführen 

zu müssen (das Design kann dann im ersten Schritt ausgewählt werden, siehe oben). Wir können uns 

auch entscheiden, die einzelnen Schritte in unsere Syntax-Datei einzufügen. Dadurch wird in unsere 

Syntaxdatei der Programmcode eingefügt (falls wir keine Syntaxdatei geöffnet haben, wird eine neue 

erzeugt), der der gesamten Prozedur entspricht, die wir soeben durch Point-and-Click in den einzelnen 

Fenstern ausgewählt haben. Wenn wir diesen Code markieren und ausführen, wird die CSV-Datei 

eingelesen. 

Verschiedene Datendateien zusammenführen 

Sollen Daten aus mehreren SPSS-Datendateien in einer Datei zusammengefügt werden, sind dabei 

grundsätzlich zwei Fälle zu unterscheiden. Entweder möchte man neue Fälle (in der Regel neue 

Personen) zu bereits existierenden hinzufügen, oder eine Datei um neue Variablen, die von denselben 

Personen stammen, ergänzen. In beiden Fällen wird aber empfohlen zum Zusammenführen der Daten 

die entsprechenden Funktionalitäten von SPSS zu verwenden und nicht händisch über Copy-Paste Daten 

von einer Datei in eine andere kopieren. Letzteres ist gerade bei größeren Datenmengen fehleranfällig 

und die Gefahr ist groß, dass fehlerhafte Dateneinträge unbemerkt in allen weiteren Auswertungs-

schritten weiterverwendet werden. 

Hinzufügen von weiteren zu bereits existierenden Fällen 

Dies ist z.B. der Fall, wenn es zwei Datendateien gibt, die dieselben Variablen enthalten, aber Daten 

von unterschiedlichen Personen. In Abbildung 2.13 sind zwei geöffnete Datendateien gezeigt, die in den 

ersten sechs Zeilen der Variablenansicht dieselben Variablen enthalten. In den Zeilen 7 – 9 sind in der 

oberen der beiden Dateien weitere Variablen enthalten, die in der anderen Datei fehlen. 
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Abbildung 2.13. Ausschnitte aus zwei geöffneten Datendateien. 

Zunächst muss geprüft werden, ob die Variablen, die in beiden Dateien vorkommen auch 

tatsächlich dasselbe erfasst haben und deshalb auch dieselben Eigenschaften in beiden Dateien haben 

(Name, Typ, Breite, Skalenniveau etc.). Die Variableneigenschaften können falls nötig entweder einzeln 

manuell oder auch für ganze Spalten auf einmal mittels Copy & Paste angepasst werden. Dazu kann 

eine Eigenschaft der gewünschten Variablen in der Datei, in der die Eigenschaften bereits korrekt 

eingegeben sind, markiert werden, auf die Auswahl ein Klick mit der rechten Maustaste getätigt und 

anschließend Copy ausgewählt werden. In der Datei, in der diese Eigenschaften geändert bzw. angepasst 

werden sollen, können die Eingaben durch den entsprechenden Prozess mittels Paste einfügt werden. 

Wenn alle Variablen, die in beiden Datendateien vorkommen, mit den korrekten 

Variableneigenschaften ausgestattet sind, kommt man zum eigentlichen Zusammenfügen. Dazu wird im 

Menü Data >> Merge Files >> Add Cases ausgewählt und im Dialogfenster die zusammenzuführenden 

Dateien ausgewählt. Dadurch werden Fälle aus einer anderen Datei dem bestehenden Datensatz 

hinzugefügt. 
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Abbildung 2.14. Fälle zu einer bestehenden Datendatei hinzufügen. 

Im nächsten Schritt (Abbildung 2.14) ist die Datei auszuwählen, aus der die Daten hinzugefügt 

werden sollen (diese Datei bleibt bestehen, die Fälle werden lediglich kopiert). Am einfachsten geht es, 

wenn die Datei, aus der man Daten kopieren möchte, bereits geöffnet ist. Aber auch nicht geöffnete 

Datendateien können über „An external SPSS Statistics data file“ ausgewählt werden. 

Nach Klicken auf Continue scheinen Variablen, die nicht in beiden Dateien vorkommen, im 

Feld „Unpaired Variables“ auf, siehe Abbildung 2.15 links. Wenn Sie diese Variablen ebenfalls in der 

neuen Datendatei haben möchten (sie werden dann lediglich für einige Fälle keine Variablenwerte 

aufweisen), markieren Sie sie, klicken auf den Pfeil zwischen den beiden Feldern und schließlich auf 

OK. Das linke Feld ist dann leer und im rechten Feld unter „Variables in New Active Dataset“ sind alle 

Variablen aufgelistet, die in der neuen Datendatei enthalten sein sollen, siehe Abbildung 2.15 rechts. 

Wenn in dem Feld „Unpaired Variables“ von Beginn an keine Variablen enthalten sind, bedeutet es nur, 

dass bereits in beiden Datendateien ausschließlich dieselben Variablen mit denselben Eigenschaften 

vorliegen. Kontrollieren Sie zum Schluss, ob alle Variablen vorhanden sind, die in den neuen Datensatz 

übernommen werden sollten. 

Speichern Sie anschließend die resultierende Datendatei unter einem neuen Dateinamen ab! Das 

ist insbesondere deshalb wichtig, weil die neuen Fälle durch die oben beschriebene Prozedur in die 

bereits geöffnete Datendatei hinzugefügt werden. Wenn sie diese dann unter demselben Namen 

abspeichern, haben sie ihre originale Datendatei überschrieben und das Original verloren! 
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Abbildung 2.15. Übernehmen von „unpaired variables“. 

Neue Variablen zu einem bestehenden Datensatz hinzufügen 

Dies findet z.B. Einsatz, wenn Sie bei denselben Personen zu zwei Zeitpunkten Variablen erhoben haben 

(entweder unterschiedliche Variablen oder als klassische Messwiederholung dieselben Variablen, die 

dann aber in den beiden Datendateien unterschiedliche Variablennamen haben müssen). Wenn zum 

Beispiel bei einer Studie einmal „vor Ort“ Daten erhoben wurden und danach zusätzlich ein 

Onlinefragebogen auszufüllen war, sodass zwei Datendateien mit unterschiedlichen Variablen, aber für 

dieselben Personen resultieren. 

Damit das Zusammenfügen der beiden Dateien funktioniert, müssen beide eine Variable 

beinhalten, durch die Variablenwerte aus beiden Dateien eindeutig jeweils derselben einzelnen Person 

zugewiesen werden können. Dabei kann es sich um jede Art eines eindeutigen persönlichen Codes 

handeln, der in SPSS als Schlüsselvariable bzw. Key-Variable bezeichnet wird. Diese Variable muss in 

beiden Datendateien exakt dieselben Eigenschaften und für jede einzelne Person dieselbe Ausprägung 

haben. 

Außerdem müssen beide Datendateien nach dieser Schlüsselvariable aufsteigend sortiert sein. 

Dieses Sortieren kann entweder als erster Schritt manuell erfolgen (muss es aber nicht, siehe unten), 

indem in beiden Datendateien in der Datenansicht die Spaltenüberschrift mit der rechten Maustaste 

angeklickt und im Kontextmenü Sort Ascending (=aufsteigend sortieren) gewählt wird. Nach dem 
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Umsortieren sollten beide Datendateien gespeichert werden (sonst findet das anschließende 

Zusammenfügen teilweise mit den unsortierten Daten vor der Speicherung statt). 

Über Data >> Merge Files >> Add Variables gelangen Sie zu dem in Abbildung 2.16 gezeigten Fenster 

zur Definition der Methode zum Zusammenfügen der Dateien. Voreingestellt ist hier „One-to-one merge 

based on key values“ und diese Option ist fast immer die beste Wahl. Außerdem ist die Option „Sort 

files by key values before merging“ auch voreingestellt. Dadurch werden die Fälle in beiden 

Datendateien vor dem Zusammenfügen nach der Schlüsselvariable sortiert. In dem in Abbildung 2.16 

gezeigten Beispiel stehen im Feld mit der Überschrift „Key Variables“ mehrere Variablen. Dies sind 

alle Variablen, die in beiden Datendateien vorkommen. An dieser Stelle muss die Variable gewählt 

werden, die als Schlüsselvariable für das Zusammenfügen herangezogen werden soll. In diesem Falle 

ist es die Variable „Code“. Nach dem Zusammenfügen kontrollieren Sie die Variablen nochmals, um 

sicherzugehen, dass alles richtig funktioniert hat und speichern die resultierende Datei wieder unter 

einem neuen Dateinamen ab. 

 

Abbildung 2.16. Hinzufügen neuer Variablen zu einem bestehenden Datensatz. 
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Übungsaufgaben 

Wir werden nun all die in diesem Kapitel beschriebenen Inhalte an einer Reihe von Übungsbeispielen 

illustrieren. 

Beispiel 2.1 

Stellen Sie einen Fernzugriff zu SPSS her. Stellen Sie die Sprache auf Englisch um. Ändern Sie das 

Dezimaltrennzeichen in Ein- und Ausgabe von einem Komma auf einen Punkt mit einer entsprechenden 

Syntaxdatei. Speichern Sie die Syntaxdatei anschließend lokal auf Ihrem Rechner ab. 

Beispiel 2.2 

Welche der folgenden gehören zu den grundlegenden Programmfenstern in SPSS? 

(a) Code-Editor 

(b) Dateneditor 

(c) Builder 

(d) Syntax-Editor 

Beispiel 2.3 

Was stimmt für Kommentare in der SPSS-eigenen Programmiersprache SPSS Syntax? 

(a) Kommentare müssen mit einem „*“ beginnen. 

(b) Kommentare müssen mit einem „.“ aufhören. 

(c) Kommentare können auch mit einer nachfolgenden Leerzeile aufhören. 

(d) Kommentare beginnen immer mit einem „%“. 

Beispiel 2.4 

Welche der folgenden Aussagen ist/sind richtig/falsch? 

Nr. Aussage R/F 

1) Daten müssen händisch in SPSS eingetippt werden.  

2) SPSS verfügt über keine Funktionalität um MS Excel Dateien einzulesen.  

3) Statistische Analysen können in SPSS ausschließlich mittels Point&Click 

durchgeführt werden. 

 



Kapitel 2: SPSS. Was ist das und wie kann ich es verwenden? 

59 

Beispiel 2.5 

Laden Sie den Ordner mit elektronischem Zusatzmaterial (Engl.: „Electronic supplementary material“) 

für dieses Übungsbuch unter dem entsprechenden Link auf https://osf.io/9tcx3/ herunter. Entpacken Sie 

den Ordner in ein Verzeichnis Ihrer Wahl auf Ihrem Computer und öffnen Sie die SPSS-Datendatei 

„test.sav“ mit SPSS. Beantworten Sie folgende Fragen: 

(a) Wie viele Variablen sind in dem Datensatz definiert? 

(b) Wie viele Variablen liegen (mindestens) auf Intervallskalenniveau vor? 

(c) Wie viele Fälle (Personen) liegen in dem Datensatz vor? 

(d) Wie alt ist die Person mit Personencode „wryz0893_z0“? Wie groß ist die Person? Ist die Person 

verheiratet? 

(e) In welcher Einheit wird die Körpergröße in dem Datensatz angegeben? In welcher Einheit wird 

das Gewicht angegeben? 

Beispiel 2.6 

Erstellen Sie eine neue Datendatei in SPSS und definieren Sie Variablen entsprechend Abbildung 2.10. 

Ergänzen Sie die Felder in der Spalte „Label“ und „Values“ sinngemäß. Wechseln Sie anschließend in 

die Datenansicht und fügen Sie der Datendatei drei Fälle (Personen) hinzu. Wählen Sie als Codes für 

diese drei Fälle: „ID1“, „ID2“, „ID3“ (ohne die Anführungszeichen). Erfinden Sie für die übrigen 

Messwerte einfach plausible Werte. Speichern Sie die Datei schließlich unter dem Dateinamen 

„Kap2UE6.sav“ ab. 

Beispiel 2.7 

Erstellen Sie mit MS Excel eine Datei mit dem in Abbildung 2.17 dargestellten Inhalt, lesen Sie diese 

anschließend in SPSS ein, und speichern Sie sie mit Dateinamen „Kap2UE7.sav“ ab. 

 

Abbildung 2.17. Eine mögliche MS Excel Datendatei. 

https://osf.io/9tcx3/
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Beispiel 2.8 

Fügen Sie die Variablen „Ma_score“, „St_score“, „Note“ aus dem Datensatz, den Sie in Beispiel 2.7 

erzeugt haben zu den Variablen aus Beispiel 2.6 für die drei Personen mit den Codes „ID1“, „ID2“ und 

„ID3“ hinzu. Kontrollieren Sie den resultierenden Datensatz und ergänzen Sie die Definition der 

Variablen gemäß Abbildung 2.13 und speichern Sie den neuen Datensatz als neue Datendatei mit 

Dateinamen „Kap2UE8.sav“ ab. 

Beispiel 2.9 

Sie erhalten die folgenden Daten für zwei weitere Personen mit den Codes „ID4“ und „ID5“: 

Code Sprache Geschlecht Alter Größe G_score Ma_score St_score Note 

ID4 1 1 19 164 92 25 21 3 

ID5 2 2 20 183 95 20 15 3 

Kopieren Sie die Tabelle in eine leere MS Excel Datei und speichern Sie die Datei als CSV-Datei ab. 

Öffnen Sie die Datei daraufhin mit einem einfachen Texteditor (unter Windows geben Sie einfach Editor 

in die Suchleiste ein und öffnen Sie die Datei damit). Sehen Sie sich den Inhalt der Datei an und 

versuchen Sie dann die Datei in SPSS einzulesen. Speichern Sie die resultierende Datendatei unter dem 

Dateinamen „Kap2UE9.sav“ ab. 

Beispiel 2.10 

Generieren Sie einen Syntax-Code, der die CSV-Datei aus Beispiel 2.9 einliest und speichern Sie die 

resultierende Syntax-Datei unter dem Dateinamen „Kap2UE10.sps“ ab. 

Beispiel 2.11 

Fügen Sie die Fälle aus dem resultierenden Datensatz aus Beispiel 2.8 mit jenen aus dem resultierenden 

Datensatz aus Beispiel 2.9 zusammen und speichern Sie den resultierenden Gesamtdatensatz unter dem 

Dateinamen „Kap2UE11.sav“ ab. 
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Beispiel 2.12 

Stellen Sie sich vor, Sie hätten den in Abbildung 2.18 gezeigten Datensatz handschriftlich auf Papier 

erhalten und sollen nun eine geeignete Datendatei mit SPSS erstellen. Erstellen und definieren Sie 

entsprechende Variablen und tragen Sie anschließend die Daten ein. Bei der Variable Geschlecht soll 

die Ziffer 1 für „weiblich“ und die Ziffer 2 für „männlich“ stehen. Beachten Sie ferner, dass Werte von 

999 bedeuten, dass der jeweilige Messwert fehlt. Speichern Sie die resultierende Datendatei unter dem 

Namen „Kap2UE12.sav“ ab. 

 

Abbildung 2.18. Ein Datensatz mit fehlenden Werten. 

Beispiel 2.13 

Wenn Sie wirklich alle Übungsbeispiele dieses Kapitels bis hierher gemacht haben, haben Sie 

vermutlich viele Datendateien gleichzeitig in SPSS geöffnet. Woran erkennen Sie, welche Datendatei 

aktuell gerade aktiv ist? 

  



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

62 

 



Kapitel 3: Datenmanagement und deskriptive Statistiken 

63 

Kapitel 3 

Datenmanagement und deskriptive Statistiken 

Stefan E. Huber 

Im vorhergehenden Kapitel haben wir uns mit einigenden grundlegenden Funktionen von SPSS befasst: 

Wie kann SPSS (von zu Hause aus) genutzt werden? Wie können Datendateien unterschiedlicher 

Formate eingelesen werden? Wie sehen Datendateien aus? Wie können sie mit SPSS erstellt werden? 

Mit den Daten selbst haben wir allerdings noch nicht viel angestellt. Diesem Aspekt wenden wir uns 

nun in diesem Kapitel zu. Zuerst werden wir einige typische Verarbeitungsschritte von Daten in SPSS 

betrachten, die man immer wieder brauchen kann. Danach werden wir uns mit deskriptiven Statistiken 

zur Charakterisierung erhobener Stichproben befassen. Die einzelnen Arbeitsschritte werden wir der 

Einfachheit halber an einem Beispieldatensatz illustrieren. Mit den Übungsbeispielen am Ende des 

Kapitels können Sie dann die einzelnen Arbeitsschritte noch einmal an einem anderen Beispieldatensatz 

wiederholen. Beide Datensätze finden Sie in dem elektronischen Ergänzungsmaterial (Engl.: electronic 

supplementary material) zu diesem Dokument, das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Den Datensatz, mit dem wir in den direkt folgenden Abschnitten arbeiten werden, finden Sie in der 

Datei „Kap3daten.sav“. 

Umkodieren von Variablen 

Wenn man mit Fragebögen arbeitet, ist es häufig nötig, einzelne Items umzukodieren. Was bedeutet 

das? Betrachten wir dafür die folgenden beiden Items (Variablennamen: politik_politik1 und 

politik_politik2), für die Sie die Messwerte für 51 Personen in dem Datensatz in der Datei 

„Kap3daten.sav“ finden: 

1. Im Großen und Ganzen sehe ich mich selbst als einen politisch interessierten Menschen. 

(Variable: politik_politik1) 

2. Politik ödet mich an. (Variable: politik_politik2) 

Beide Items sind auf einer fünfstufigen Likert-Skala von „trifft überhaupt nicht zu“ (1) bis „trifft 

völlig zu“ (5) zu beantworten (überzeugen Sie sich davon, indem Sie in der Spalte „Values“ im SPSS-

https://osf.io/9tcx3/
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Datensatz nachsehen). Beide Items zielen ebenfalls darauf ab zu quantifizieren, wie gerne sich jemand 

mit Politik beschäftigt. Das heißt, wir könnten auch sagen, das Merkmal, dessen Ausprägung mit diesen 

Items gemessen werden soll, ist die Politikaffinität einer Person. Eine sehr politikaffine Person wird das 

erste der beiden Items eher mit hohen Werten beantworten, das zweite eher mit niedrigen. Bei einer 

wenig politikaffinen Person wäre es gerade umgekehrt. 

Wenn wir also nun die Politikaffinität von Personen mit diesen Items erfassen wollen, wäre es 

vorteilhaft, wenn für beide Items gelten würde, dass hohe Werte hohe Politikaffinität und niedrige Werte 

niedrige Politikaffinität bedeuten. Wäre das der Fall, könnten wir die Werte der beiden Items einfach 

zusammenzählen oder ihren Mittelwert bilden und hätten in beiden Fällen eine Zahl, die die 

Politikaffinität der befragten Person erfasst (zumindest bis auf einen Messfehler). 

Um genau das zu erreichen, können wir die zweite der beiden Variablen umkodieren oder 

genauer: umpolen. Das heißt, wir drehen sozusagen die Skala um: niedrige Werte sollen hohe Werte 

bedeuten und hohe Werte niedrige. Wieso? Weil eine Person, die einen niedrigen Wert beim Item 

„Politik ödet mich an“ auswählt, eine hohe Politikaffinität hat und umgekehrt. 

Wie können wir das in SPSS machen? Dazu wählen wir im Menü „Transform“ die Option 

„Recode into Different Variables…“ aus wie in Abbildung 3.1 gezeigt. 

 

Abbildung 3.1. Um eine Variable umzukodieren benötigen wir im Menü „Transform“ die Option 

„Recode into Different Variables…“. 
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Im sich dadurch öffnenden Fenster wird nun links eine Liste mit all den Variablen des aktiven 

Datensatzes angezeigt. Allerdings werden diese Variablen standardmäßig durch die Angabe ihrer Labels 

angezeigt. Das ist oft recht unübersichtlich. Durch einen Rechtsklick irgendwo in das linke Fenster 

öffnet sich ein Kontextmenü. Wenn wir dort „Display Variable Names“ auswählen, werden uns die 

Variablennamen anstelle der Labels angezeigt. Dies ist allerdings nur dann ein Vorteil, wenn man sich 

gute, prägnante Bezeichnungen für die Variablen überlegt hat (dieser Aufwand macht sich also bei der 

Definition der Variablen eines Datensatzes häufig bezahlt). 

Wählen wir nun die Variable politik_politik2 aus (da wir diese Variable umkodieren wollen) 

und klicken auf den kleinen Pfeil, der nach rechts zeigt, wird diese Variable in das Fenster „Input 

Variable -> Output Variable“ verschoben. Alternativ können wir die Variable auch in dieses Fenster 

hineinziehen (mittels Linksklick und Halten bzw. Drag-and-drop). Unter „Output Variable“ können wir 

der neuen Variable, die wir aus der alten erzeugen werden, einen Namen und ein Label geben (diese 

werden dann in der Variablenübersicht auch genauso angezeigt werden). Dort tragen wir nun bei 

„Name“ den Text „politik_politik2_umk“ ein und bei „Label“ den Text „Umkodierung des Items 

"Politik ödet mich an."“. Durch Klicken auf „Change“ werden diese Bezeichnungen bestätigt, was wir 

daran erkennen, dass nun im zentralen Fenster der Variablenname der neuen Variable eingefügt wird. 

Unter „Old and New Values…“ können wir die Regeln für die Umkodierung festlegen. Wenn 

wir auf diese Schaltfläche klicken, öffnet sich ein weiteres Fenster. In diesem Fenster können wir nun 

festlegen wie die Werte unserer ursprünglichen Variable (politik_politik2) auf die Werte unserer neuen 

Variable (politik_politik2_umk) abgebildet werden sollen. Hier geben wir nun bei „Old Value“ unter 

„Value“ die Zahl 5 ein, und anschließend bei „New Value“ unter „Value“ die Zahl 1. Dann klicken wir 

rechts in der Mitte des Fensters auf „Add“ und sehen daraufhin einen neuen Eintrag in dem Feld, der 

mit „Old --> New“ überschrieben ist. Dort steht jetzt „5 --> 1“. Das bedeutet, der hohe Wert 5 der alten 

Variable wird auf den Wert 1 der neuen Variable abgebildet; das heißt, hohe Werte für „Politik ödet 

mich an“ werden auf niedrige Werte des entsprechend umgepolten Items (mit der gegenteiligen 

Bedeutung, also etwa im Sinne von „Politik fasziniert mich“) abgebildet. Ganz analog verfahren wir 

nun mit den übrigen Werten 4, 3, 2, und 1 und bilden diese auf die neuen Werte 2, 3, 4, 5 ab. Wenn wir 

damit fertig sind, klicken wir auf „Continue“, woraufhin sich dieses Fenster schließt. 
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Damit sind wir eigentlich schon fertig. Wir könnten nun auf „OK“ klicken und uns an der neu 

eingefügten Variable in der Variablenansicht (und an den entsprechenden Messwerten in der 

Datenansicht) erfreuen. Allerdings werden wir die Gelegenheit gleich nutzen, um uns etwas in gute 

Praxis der Datenanalyse einzuarbeiten. Daher klicken wir nicht auf „OK“, sondern stattdessen auf 

„Paste“. 

Dadurch öffnet sich eine Syntaxdatei, in der nun bereits einige Zeilen eingefügt sind. War bereits 

eine Syntaxdatei geöffnet, wurden diese Zeilen in dieser am Ende hinzugefügt. Diese Zeilen mit den 

entsprechenden Kommandos entsprechen nun genau dem Code, den SPSS ausgeführt hätte, wenn wir 

vorhin auf „OK“ geklickt hätten. Das ist also der Code, der unsere alte Variable in eine neue umkodiert. 

Theoretisch hätten wir diesen Code auch in eine Syntaxdatei eintippen können und dann ausführen und 

wir hätten dasselbe Ergebnis wie mit dem Klick auf „OK“ erhalten. Wir haben allerdings diesen Code 

noch nicht ausgeführt. Das machen wir jetzt, indem wir die Codezeilen markieren und dann auf das 

grüne „Abspielen“-Symbol klicken. 

In der Variablenansicht sollte nun eine neue Variable mit dem Namen „politik_politik2_umk“ 

und dem Label, das wir vorhin definiert haben, hinzugekommen sein. Alle anderen Einstellungen 

können wir jetzt noch vornehmen. Das heißt, wir ändern die Anzahl der Dezimalstellen auf 0, fügen die 

Werte wie für die beiden Items politik_politik1 und politik_politik2 ein (das geht einfach mittels Copy 

& Paste) und ändern noch das Skalenniveau und die Rolle der Variablen entsprechend 

(selbstverständlich können wir auch die übrigen kosmetischen Einstellungen noch anpassen). In der 

Datenansicht können wir uns nun davon überzeugen, dass Personen, die niedrige Werte bei der 

Variablen politik_politik2 hatten, hohe Werte bei der neuen Variable politik_politik2_umk aufweisen 

und umgekehrt. Wir sind also jetzt mit dem Umkodieren der Variable wirklich fertig, juhu! 

Aber warum haben wir oben bloß diesen Umweg über die Syntaxdatei gemacht? Wie gesagt, 

das hat mit guter Praxis der Datenanalyse zu tun. Bei einer Datenanalyse können unter Umständen sehr 

viele Arbeitsschritte erfolgen bis man beim Endergebnis angelangt ist. Möchte man nun später wissen, 

was man selbst oder jemand anders bei einer Datenanalyse genau gemacht hat, kann man das sehr 

schlecht, wenn überhaupt nachvollziehen, wenn sich diejenige Person bei der Analyse einfach nur durch 
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alle Schritte „hindurchgeklickt“ hat und einem am Ende die fertige Ausgabedatei übergibt (oder in 

unserem aktuellen Fall den Datensatz mit der neuen Variable). Fügt man allerdings alle Arbeitsschritte 

in eine Syntaxdatei ein und speichert diese ab, so sind dort bereits alle Arbeitsschritte dokumentiert und 

man kann diese sogar noch mit Kommentaren versehen, um einzelne Schritte zu erläutern bzw. zu 

erklären (es ist nämlich überhaupt nicht immer selbstverständlich, weshalb man was genau an welcher 

Stelle macht und ganz selbsterklärend ist der SPSS Syntax Code auch nicht immer). Deshalb wechseln 

auch wir noch einmal in unser Syntaxfenster zurück und fügen über den Zeilen mit dem gerade 

ausgeführten Code noch die beiden Kommentarzeilen „* Kapitel 3: Datensatz Kap3daten.sav.“ und „* 

Umkodieren der Variable politik_politik2.“ hinzu. Danach speichern wir die Datei unter einem 

beliebigen Namen, z.B. „Kap3dokumentation.sps“, ab. 

Mit allen weiteren Arbeitsschritten werden wir nun ebenso verfahren. Das heißt, wir werden sie 

immer erst in diese Syntaxdatei einfügen, die entsprechenden Kommandozeilen dort ausführen und 

zwischendurch abspeichern. Am Ende des Kapitels haben wir dann eine Dokumentation für alle 

Arbeitsschritte, die hier behandelt werden. Die entsprechende Dokumentation finden Sie ebenfalls in 

dem elektronischen Ergänzungsmaterial zu diesem Dokument, das Sie unter https://osf.io/9tcx3/ 

herunterladen können. 

Abbildung 3.2, Abbildung 3.3 und Abbildung 3.4 fassen noch einmal sämtliche Arbeitsschritte 

zum Umkodieren einer Variablen, die gerade im Detail erläutert wurden, zusammen. In den übrigen 

Abschnitten werden nicht alle Schritte verbal ausformuliert, sondern manchmal bloß auf entsprechende 

Abbildungen verwiesen. Je mehr Sie mit SPSS arbeiten, desto klarer sollte auch werden, dass man die 

meisten Abläufe nicht auswendig wissen muss, sondern mit ein bisschen Verständnis für das, was man 

eigentlich vorhat und der Fähigkeit sich umzuschauen bzw. sinnerfassend zu lesen, recht schnell an den 

einzelnen Bezeichnungen der Menüs und Optionen ablesen kann, wie man durchführen kann, was 

immer man eben vorhat. Am Anfang ist das natürlich noch sehr verwirrend, aber die eigene Übersicht 

ändert sich erfahrungsgemäß sehr rasch mit fortschreitender Übung. 

https://osf.io/9tcx3/
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Abbildung 3.2. Fenster „Recode Into Different Variables…“. 

 

Abbildung 3.3. Fenster, das sich nach Klicken auf „Old and New Values…“ öffnet. Beachte, dass alle 

fünf Zuordnungen jeweils durch eine Angabe eines alten und eines neuen Werts und anschließendes 

Klicken auf „Add“ getätigt werden müssen. 

Vielleicht ist auch aufgefallen, dass es neben der Option „Recode into Different Variables…“ 

auch die Möglichkeit gegeben hätte „Recode into Same Variables…“ auszuwählen. Damit hätten wir in 

der Tat, das Item politik_politik2 mit seiner umkodierten Version direkt überschreiben können. Das mag 

angesichts der Tatsache, dass wir für die Erfassung der Politikaffinität von Personen das ursprünglich 

„verkehrt“ herum kodierte Item ja gar nicht mehr brauchen, durchaus sinnvoll erscheinen. Aus Sicht 
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guter Analysepraxis ist es aber keine gute Idee das zu machen, weil dadurch das ursprüngliche Item 

verlorengeht bzw. der ursprüngliche Datensatz verändert wird. Will man dann zu einem späteren 

Zeitpunkt noch einmal ganz neu anfangen, weil man sich irgendwo festgefahren hat, kann man u.U. 

nicht mehr zum originalen Datensatz zurück (mit einer guten Dokumentation ließe sich das zwar 

umkehren, aber benötigt trotzdem zusätzliche Arbeitsschritte). Es wird also empfohlen, niemals den 

ursprünglichen Datensatz direkt zu verändern, sondern in solchen Fällen immer neue Variablen zu 

generieren. 

 

Abbildung 3.4. Syntaxdatei mit der Dokumentation der Prozedur für das Umkodieren der Variablen 

politik_politik2 in die Variable politik_politik2_umk. 

Index- oder Skalenbildung 

Oben wurde bereits davon gesprochen, die beiden Items politik_politik1 und politik_politik2 

bzw. politik_politik2_umk zu kombinieren, um einen Zahlenwert zu erhalten, der die Politikaffinität 

einer Person insgesamt beschreiben soll. Um einen solchen Index oder eine solche Skala zu bilden, 

können z.B. einfach die Summe oder der Mittelwert der beiden Items für jede Person berechnet werden. 

In diesen Fällen spricht man dann von einer Summen- oder einer Mittelwertskala (oder -index). Auch 

das lässt sich einfach mit SPSS machen. 

Dafür wählen wir wieder das Menü „Transform“ und dort „Compute Variable…“ oder in 

Kurzform (wie es im Folgenden häufig geschrieben werden wird): Transform >> Compute Variable…. 

Im sich öffnenden Fenster geben wir unter „Target Variable“ einen Namen für unsere neue 

Variable an. Für den vorliegenden Fall schreiben wir hier „Politikaffinität_Summe“. Danach können 

wir das Item politik_politik1 in das Feld „Numeric Expression“ ziehen, die Schaltfläche mit dem „+“ 

anklicken und dann noch das Item politik_politik2_umk in das Feld „Numeric Expression“ ziehen. 
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Daraufhin klicken wir wieder auf „Paste“, woraufhin zwei neue Zeilen in unsere Syntaxdatei eingefügt 

werden. Zu diesen fügen wir noch einen entsprechenden Kommentar hinzu. Dann sollte alles aussehen 

wie in Abbildung 3.5. 

 

Abbildung 3.5. Bildung einer Summenskala für Politikaffinität aus den beiden Items politik_politik1 

politik_politik2_umk. 

Ausführen der beiden letzten, gerade hinzugefügten Kommandozeilen erzeugt schließlich 

unsere Summenskala, die wir daraufhin in der Variablen- und Datenansicht bewundern können, und 

noch die nötigen Eigenschaften für sie definieren bzw. nachtragen sollten. 

Für eine einfache Summenskala ist oft der Umweg über Transform >> Compute Variable… gar 

nicht notwendig. Wenn man das häufig macht, ist es bequemer einfach gleich die entsprechenden Zeilen 

in der Syntax einzutragen. 

Ganz analog kann eine Mittelwertskala gebildet werden. Unter Transform >> Compute 

Variable… ist dafür erstmal ein neuer Name für diese Variable einzugeben, z.B. 

„Politikaffinität_Mittelwert“. Danach kann im Feld „Function group“ der Begriff „Statistical“ 

ausgewählt werden. Unter „Functions and Special Variables“ kann dann „Mean“ ausgewählt werden. 

Im Feld „Numeric Expression“ sind dann schließlich noch die beiden „?“ durch die beiden Items 

politik_politik1 und politik_politik2_umk zu ersetzen (z.B. per Drag-and-drop oder per Doppelklick auf 

den Variablennamen). Mittelwerte können auch für mehr als zwei Items gebildet werden. Dafür muss 

innerhalb der Klammern schlichtweg ein weiteres Komma und dann eine weitere entsprechende 

Variable (und dies eventuell wiederholt) eingegeben werden. 
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Durch Klicken auf „Paste“ werden wieder die entsprechenden Kommandos der Syntaxdatei 

hinzugefügt. Wenn man das Kommando für die Berechnung des Mittelwerts kennt, kann man alternativ 

die entsprechende Zeile natürlich auch einfach gleich händisch in die Syntaxdatei eintragen. In jedem 

Fall sind die beiden Zeilen danach noch auszuführen (und zu kommentieren; gute Analysepraxis!). Die 

Syntaxdatei sollte dann wie in Abbildung 3.6 aussehen. 

 

Abbildung 3.6. Bildung einer Mittelwertskala für Politikaffinität aus den beiden Items politik_politik1 

politik_politik2_umk. 

Nach dem Ausführen der beiden soeben hinzugefügten Kommandozeilen gibt es wieder eine 

neue Variable in unserem Datensatz. 

Kategorienbildung 

Eine weitere Sache, die manchmal ganz nützlich sein kann, ist die Bildung von Kategorien. 

Beispielsweise kann es sein, dass man (z.B. zum Zwecke der Anonymisierung) nicht das genaue Alter 

von Personen angeben will, sondern lediglich Alterskategorien. 

Wir sehen uns die Bildung von Kategorien allerdings am Beispiel der Schuhgrößen an. Die 

entsprechende Variable sollte sich im Datensatz relativ einfach ausfindig machen lassen. Unter 

Transform >> Recode into Different Variables… entfernen wir nun zuerst den bestehenden Eintrag im 

Feld „Input Variable -> Output Variable“ (der noch da ist, weil wir vorhin eine Variable umkodiert 

haben) und ziehen dann die Variable schuhgröße in dieses Feld. Als Namen für unsere neue Variable 

wählen wir „Schuhgrößenkategorie“ und als Label „Schuhgröße in den Kategorien klein (0) und groß 

(1)“. Dann klicken wir wieder auf „Change“ und das Ergebnis sollte wie Abbildung 3.7 aussehen. 
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Abbildung 3.7. Bildung von Kategorien durch Umkodieren einer Variablen. 

Im Untermenü „Old and New Values…“ entfernen wir zuerst alle alten Einträge aus dem Feld 

„Old --> New“. Dann wählen wir links „Range, LOWEST through value“ aus und tragen in dem Feld 

direkt darunter die Zahl 39 ein. In dem Feld unter „New Value“ tragen wir die Zahl 0 ein. Anschließend 

klicken wir auf „Add“. Danach wählen wir links „Range, value through HIGHEST“ aus und tragen in 

dem Feld direkt darunter die Zahl 40 ein. In dem Feld unter „New Value“ tragen wir die Zahl 1 ein. 

Anschließend klicken wir auf „Add“. Was wir gerade gemacht haben, bedeutet folgendes: Alle 

Schuhgrößen von der kleinsten bis zur Größe 39 werden der Kategorie 0, alle Schuhgrößen ab 40 bis 

zur größten der Kategorie 1 zugeordnet. Das Ganze sollte aussehen wie in Abbildung 3.8. Abschließend 

klicken wir auf „Continue“, dann auf „Paste“, kommentieren die neu hinzugekommenen Zeilen in der 

Syntaxdatei und führen diese aus. In der Variablenansicht sollten wir die neu hinzugekommen Variable 

noch mindestens um die Werte 0 mit dem Label „klein“ und 1 mit dem Label „groß“ in der Spalte 

„Values“ ergänzen (in die Zelle klicken und mit dem +-Symbol dann die entsprechenden zwei Zeilen 

ergänzen). In der Datenansicht können wir uns schließlich noch davon überzeugen, dass nun tatsächlich 

jede Person mit einer Schuhgröße von 39 oder kleiner in der Kategorie 0 und jede Person mit einer 

Schuhgröße von 40 oder größer in der Kategorie 1 gelandet ist. Mit der Schaltfläche „Value Labels“, 

siehe Abbildung 3.9, können wir auch zwischen den Zahlenwerten und den Kategorienbezeichnungen 

für kategoriale Variablen hin und her schalten (sofern diese definiert wurden, was wir aber aus diesem 

Grund für die Variable Schuhgrößenkategorie gerade getan haben). 
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Abbildung 3.8. Kategorienbildung für Schuhgrößen. 

 

Abbildung 3.9. Schaltfläche „Value Labels“ in der Datenansicht. 
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Deskriptive Statistiken 

Wie es der Name schon andeutet, dienen deskriptive Statistiken der Beschreibung. In unserem 

Fall dienen sie, genauer gesagt, der Beschreibung unserer Stichprobe(n). Es handelt sich also um Zahlen, 

die dabei helfen sollen, Stichproben zu charakterisieren. Zum Beispiel könnten wir uns fragen: Wie viele 

Männer und Frauen gibt es in unserer Stichprobe? Wie viele Personen hatten ein „Sehr gut“ als 

Abschlussnote in Mathematik? Wie alt sind die Personen der Stichprobe im Mittel? Wie stark variiert 

das Alter der Personen in der Stichprobe? Für all diese Fragen gibt es Zahlen oder Größen, die zur 

Beantwortung herangezogen werden können. Damit werden wir uns in diesem Abschnitt befassen. 

Häufigkeiten 

Eine der einfachsten Möglichkeiten sich einen Überblick über die Ausprägungen einer bestimmten 

Variablen in einer Stichprobe zu verschaffen sind Häufigkeitstabellen. Diese können in SPSS über 

Analyze >> Descriptive Statistics >> Frequencies… generiert werden. Im linken Feld können wieder 

die Variablen ausgewählt werden, für die wir Häufigkeitstabellen generieren wollen. Wählen wir hier 

der Übersichtlichkeit halber erstmal nur drei aus: alter, geschlecht, notemathe (durch Halten der Taste 

„Strg“ können mittels Linksklick gleich mehrere Variablen ausgewählt werden; mittels Rechtsklick 

irgendwo im linken Feld können wieder die Variablennamen anstelle der Labels angezeigt werden). 

Unter „Charts…“ können zusätzlich noch einige Grafiken wie z.B. Balkendiagramme oder 

Histogramme ausgewählt werden. Wir wählen hier zusätzlich noch Balkendiagramme (d.h. „Bar 

Charts“) aus. Wir bestätigen die Auswahl mit Klick auf „Continue“ und klicken dann wieder auf „Paste“. 

In der Syntaxdatei führen wir die soeben eingefügten Kommandozeilen wieder aus (nachdem wir sie 

entsprechend kommentiert haben; z.B. mit „*Häufigkeitstabellen und Balkendiagramme für Alter, 

Geschlecht, und Abschlussnote in Mathematik.“). 

Durch Ausführen der entsprechenden Kommandozeilen in der Syntaxdatei erhalten wir nun zum 

ersten Mal eine Ausgabe (sowohl numerisch als auch grafisch). Dafür öffnet sich das Ausgabefenster, 

das wir nun auch endlich aus gegebenem Anlass etwas eingehender untersuchen können. Zuallererst 

bietet es sich aber an, auch die Ausgabe gleich einmal zwischenzuspeichern, z.B. unter dem Dateinamen 

„Kap3ausgabe.spv“. Sie finden eine Ausgabedatei zur Illustration für dieses Kapitel auch in dem 
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elektronischen Ergänzungsmaterial zu diesem Dokument, das Sie unter https://osf.io/9tcx3/ 

herunterladen können. 

Auf der linken Seite des Ausgabefensters sehen wir ein hierarchisches Inhaltsverzeichnis, das 

wir zum schnellen Manövrieren in der Ausgabe verwenden können. Jeder einzelne Teil der Ausgabe ist 

dort angeführt. Klicken wir zum Beispiel auf „Alter in Jahren“ unter „Bar Chart“ springen wir in der 

eigentlichen Ausgabe im rechten Feld sofort zum Balkendiagramm für unsere Altersvariable. Gerade 

bei sehr umfangreichen Ergebnissen kann es sehr praktisch sein, schnell zu einzelnen Abschnitten 

wechseln zu können. 

Für den Moment ist unsere Ausgabe aber noch sehr übersichtlich. Zuallererst finden wir eine 

Angabe, auf welche Datendatei sich die gelisteten Ergebnisse überhaupt beziehen (diese erscheint u.U. 

nur, wenn mehrere Datendateien gleichzeitig geöffnet sind). Hier kann schnell erkannt werden, falls 

eine Analyse irrtümlich für eine falsche Datendatei durchgeführt wurde. Das kann schnell einmal 

passieren, wenn man viele Datendateien gleichzeitig geöffnet hat. Daher wird gerade für den Beginn der 

Arbeit mit (und Einübung in) SPSS empfohlen bei jeder Analyse nur einen einzigen Datensatz geöffnet 

zu haben. 

Direkt im Anschluss finden wir eine Tabelle mit der Überschrift „Statistics“. Diese Tabelle zeigt 

uns lediglich an, dass für alle drei ausgewählten Variablen jeweils 51 Messwerte vorliegen und 

insbesondere für keine Variable fehlende Werte vorliegen, siehe Abbildung 3.10. 

 

Abbildung 3.10. Unsere erste mit SPSS erzeugte Tabelle, wie schön! 

  

https://osf.io/9tcx3/
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Unter der Überschrift “Frequency Table“ finden wir anschließend drei Häufigkeitstabellen, je 

eine für unsere drei Variablen. In jeder Häufigkeitstabelle sind die einzelnen Messwertausprägungen 

der Größe nach geordnet (bei nominalen Variablen werden dafür, sofern vorhanden, die definierten 

Zahlenwerte für die einzelnen Kategorien verwendet) und sowohl absolute als auch relative 

Häufigkeiten (in Prozent) sowie kumulierte relative Häufigkeiten angegeben. Die Spalte mit der 

Bezeichnung „Valid Percent“ beinhaltet die relative Häufigkeit nach Bereinigung für fehlende Werte. 

Da in unserem Fall keine Werte fehlen, beinhalten die Spalten „Percent“ und „Valid Percent“ dieselben 

Werte. 

An den Häufigkeitstabellen lassen sich nun bereits viele Eigenschaften über die Verteilung der 

drei Variablen in der Stichprobe ablesen. Beispielsweise erkennen wir an der Häufigkeitstabelle für das 

Alter, dass beinahe die Hälfte der Stichprobe 20 Jahre oder jünger ist, dass alle Personen volljährig sind, 

dass es nur eine Person über 30 gibt etc., siehe Abbildung 3.11. Zudem sehen wir an der 

Häufigkeitstabelle für das Geschlecht, dass fast drei Viertel der Stichprobe weiblich sind. An der 

Häufigkeitstabelle für die Abschlussnote in Mathematik sehen wir, dass mehr als die Hälfte mit „Sehr 

Gut“ oder „Gut“ abgeschlossen hat und knapp 10% mit „Genügend“, siehe Abbildung 3.12. 

 

Abbildung 3.11. Die von SPSS generierte Häufigkeitstabelle für die Variable alter, mit der das Alter der 

Personen in der Stichprobe erfasst wurde. 
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Abbildung 3.12. Die beiden Häufigkeitstabellen für das Geschlecht und die Schulabschlussnote in 

Mathematik für die Personen in der Stichprobe. 

Auch wenn hier zu Illustrationszwecken die von SPSS generierten Tabellen in Form von Bildern 

gezeigt werden, wird hier bereits darauf hingewiesen, dass das Einfügen von Tabellen in Form von 

Abbildungen in Ergebnisberichten keine gute Analysepraxis ist (da sich dann u.a. einzelne Zahlen, 

Zeilen oder Spalten für etwaige Weiterverarbeitung der Daten durch Dritte nicht aus den Berichten 

extrahieren lassen; bzw. nicht auf vergleichsweise einfachem Weg). Für Ergebnisberichte sollten also 

im entsprechenden Dokument wirklich auch Tabellen erstellt werden, wenn tabellarische Ergebnisse zu 

berichten sind oder der Verständlichkeit der Ergebnisdarstellung dienlich sind. 

Die angeforderten Balkendiagramme geben uns schließlich noch visuell Aufschluss über die 

Verteilung der drei Variablen in der Stichprobe. Das resultierende Balkendiagramm für die Mathematik-

Abschlussnoten ist in Abbildung 3.13 (oberes Panel) dargestellt. Für die Balkendiagramme sind absolute 

Häufigkeiten auf der Ordinate abgetragen, im Kontextmenü unter „Charts…“ unter Analyze >> 

Descriptive Statistics >> Frequencies… können hierfür aber auch relative Häufigkeiten ausgewählt 

werden, indem „Percentages“ unter „Chart Values“ ausgewählt wird.  
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Abbildung 3.13. Oben: Balkendiagramm für die Mathematik-Abschlussnoten in absoluten 

Häufigkeiten. Unten: Balkendiagramm für die Mathematik-Abschlussnoten in relativen Häufigkeiten 

(in Prozent). 

Aus den Häufigkeitstabellen lässt sich auch bereits ablesen, welche Ausprägung der jeweiligen 

Variable am häufigsten vorkommt. Zum Beispiel ist das häufigste Alter 20 Jahre, das häufigste 

Geschlecht „weiblich“ und die häufigste Abschlussnote „Gut“. Bei diesen Werten handelt es sich also 

um die sogenannten Modalwerte für diese Variablen. Der Modalwert ist bereits ein Beispiel für 

Maßzahlen zur Beschreibung von Stichproben. Diesen wenden wir und jetzt zu. 
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Maßzahlen 

Gerade für metrische Variablen mit sehr vielen einzelnen Ausprägungen sind oft Häufigkeitstabellen 

weniger informativ. Um die Verteilung von metrischen Variablen über die Stichprobe zu 

charakterisieren, bietet es sich stattdessen eher an, Maßzahlen wie Mittelwert, Median, 

Standardabweichung, Schiefe (Engl.: Skewness) oder Wölbung (auch: Kurtosis) zu ermitteln sowie auf 

grafische Darstellungen wie Boxplots oder Histogramme zurückzugreifen. 

In SPSS gibt es viele verschiedene Möglichkeiten sich Maßzahlen ausgeben zu lassen. Im 

Folgenden sind einige Möglichkeiten wiederum für das Beispiel der Variable alter angeführt. 

Eine Möglichkeit besteht beispielsweise in der Auswahl der gewünschten Maßzahlen unter 

Analyze >> Descriptive Statistics >> Frequencies… und dort unter „Statistics…“, siehe Abbildung 

3.14. In diesem Fall haben wir den Mittelwert, den Median, den Modalwert als Lagemaße, die 

Standardabweichung, das Minimum und Maximum sowie die Spannweite (= Maximum – Minimum) 

als Streuungsmaße, sowie Schiefe und Wölbung zur Charakterisierung der Form der Verteilung des 

Alters in der Stichprobe ausgewählt. 

 

Abbildung 3.14. Auswahl einiger deskriptiver Statistiken für die Variable alter. 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

80 

Das Ergebnis ist in Abbildung 3.15 dargestellt. Wir sehen wiederum, dass 51 Messwerte 

vorliegen und für keine Person das Alter fehlt. Das mittlere Alter in der Stichprobe beträgt 21.63 Jahre, 

der Median liegt bei 21 Jahren. Das hätten wir auch schon an der Häufigkeitstabelle oben ablesen 

können, da der Median ja gerade jene Variablenausprägung ist, die die Reihe der Größe nach geordneter 

Messwerte in zwei gleich große Hälften teilt. Auch der Modalwert von 20 Jahren war uns schon bekannt 

(dieser ist aber bei metrischen Variablen kaum je interessant). Die Standardabweichung beträgt ferner 

3.49 Jahre. Hierbei ist wichtig zu beachten, dass es sich dabei nicht um die empirische 

Standardabweichung 

𝑠𝑒𝑚𝑝 = √
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 

handelt, sondern um den Schätzwert der Populationsstandardabweichung auf Basis der Stichprobe 

mittels der (erwartungstreuen) Schätzfunktion für die Populationsvarianz 𝜎2, d.h. 

𝑠 = √𝜎̂𝑊𝑒𝑟𝑡
2 = √

1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

. 

 

Abbildung 3.15. Ergebnistabelle für die angeforderten Maßzahlen für die Verteilung der Altersvariable 

in der Stichprobe. 
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Am positiven Wert der Schiefe erkennen wir, dass es sich um eine rechtsschiefe bzw. linkssteile 

Verteilung handelt, siehe Abbildung 3.16. Das heißt, dass sich die Verteilung von einer symmetrischen 

Verteilung nach links hin weg neigt, was auch daran erkennbar ist, dass Median und Modalwert jeweils 

kleiner als der Mittelwert sind. Die positive Wölbung (Kurtosis) zeigt an, dass die Flanken der 

Altersverteilung zudem ausgeprägter sind als bei einer Normalverteilung, dass es also mehr extreme 

Ausreißer geben könnte als aufgrund einer Normalverteilung zu erwarten wären. Hier ist wichtig zu 

bedenken, dass SPSS nicht die eigentliche Wölbung, sondern den Exzess (Wölbung minus 3) gegenüber 

einer Normalverteilung ausgibt (eine Normalverteilung hat eine Wölbung von 3). Der Vergleich der 

Werte für Schiefe und Wölbung mit ihren jeweiligen Standardfehlern zeigt zudem an, dass beide 

Maßzahlen deutlich von denjenigen abweichen, die man für die Ziehung einer einfachen 

Zufallsstichprobe aus einer normalverteilten Grundgesamtheit erwarten könnte. In beiden Fällen weist 

ein Verhältnis der jeweiligen Maßzahl zu ihrem Standardfehler von mehr als 2 auf eine deutliche 

Abweichung hin. Zur Bedeutung dieser Maßzahlen für die Einschätzung, ob eine Variable durch eine 

normalverteilte Zufallsvariable approximiert werden kann, werden wir aber in späteren Kapiteln noch 

kommen. Es macht also nichts, falls diese Informationen jetzt noch sehr abstrakt klingen. 

 

Abbildung 3.16. Rechtsschiefe bzw. linkssteile Altersverteilung. 
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Die Spannweite gibt schließlich an, dass das Alter in der Stichprobe einen Bereich von 19 Jahren 

abdeckt. Dies lässt sich auch leicht an Maximum und Minimum ablesen: die älteste Person war 37 Jahre 

alt, die jüngste 18. 

Eine weitere Möglichkeit sich einen grafischen Überblick über die Verteilung des Alters in der 

Stichprobe zu verschaffen, besteht in einem sogenannten Boxplot. Dieses kann über Graphs >> Chart 

Builder… generiert werden. Dort kann dann aus dem Menü links unten „Boxplot“ und in der dortigen 

Auswahl dann das einfache Boxplot (dritte Möglichkeit ganz rechts) ausgewählt werden, siehe 

Abbildung 3.17. Die Variable alter kann dann auf die y-Achse (Ordinate; in SPSS vor Einfügen der 

Variablen allerdings als x-Achse bezeichnet) gezogen werden. Mittels „Paste“ kann der nötige Code in 

die Syntaxdatei eingefügt werden. Die Ausführung des Codes erzeugt dann das Boxplot, das in 

Abbildung 3.18 gezeigt ist. 

 

Abbildung 3.17. Auswahl eines einfachen Boxplots unter Graphs >> Chart Builder…. 

Das resultierende Boxplot illustriert ebenfalls die deutliche Schiefe der Altersverteilung. Die 

mittleren 50% der Variable Alter drängen sich am unteren Ende der Verteilung, was man an der Lage 

der blauen Box in Abbildung 3.18 erkannt. Die obere Kante dieser Box entspricht dem 3. Quartil der 

Altersverteilung, d.h. jenem Alter unterhalb dessen 75% aller Messwerte liegen. Die untere Kante 



Kapitel 3: Datenmanagement und deskriptive Statistiken 

83 

entspricht dem ersten Quartil, d.h. jenem Alter unterhalb dessen 25% aller Messwerte liegen. D.h. 

zwischen der unteren und der oberen Kante, d.h. innerhalb der Box liegen die Hälfte der Messwerte. 

Nach unten erstrecken sich die unteren 25% nicht sehr weit (da das Mindestalter in der Stichprobe 18 

Jahre beträgt). Nach oben hin (also zu höherem Alter) erstrecken sich die Messwerte also noch recht 

weit. Mit einem 37-jährigen liegt sogar ein extremer Ausreißer (erkennbar durch den Stern in der 

Darstellung) vor. Extreme Ausreißer sind durch mehr als 3 Interquartilsabstände von der 

nächstliegenden Kante der Box charakterisiert. Gewöhnliche Ausreißer sind durch mehr als 1.5 

Interquartilsabstände von der nächstliegenden Kante der Box charakterisiert und würden durch einen 

Kreis dargestellt werden (hier haben wir allerdings keine gewöhnlichen Ausreißer). Messwerte 

zwischen dem Minimum und dem ersten Quartil bzw. zwischen dem dritten Quartil und dem Maximum 

werden durch die sogenannten Whiskers (die T-förmigen Ausformungen in Abbildung 3.18) dargestellt. 

 

Abbildung 3.18. Boxplot der Altersverteilung. 

Wie oben bereits angekündigt, gibt es in SPSS aber noch jede Menge andere Möglichkeiten sich 

deskriptive Statistiken (und gegebenenfalls noch weitere grafische Veranschaulichungen) ausgeben zu 

lassen. Eine weitere Möglichkeit besteht unter Analyze >> Descriptive Statistics >> Descriptives…, wo 

unter „Options…“ dann eine Auswahl an Maßzahlen getroffen werden kann (allerdings kann dort weder 

Median noch Modalwert ausgegeben werden). 
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Unter Analyze >> Descriptive Statistics >> Descriptives… kann zudem auf einfache Weise eine 

z-Transformation von Variablen durchgeführt werden. Dazu muss nur die Option „Save standardized 

values as variables“ angewählt werden, siehe Abbildung 3.19. Die z-Transformation einer Variablen 

ergibt eine neue Variable mit Mittelwert 0 und Standardabweichung 1 und ist gegeben durch: 

𝑧𝑖 =
𝑥𝑖 − 𝑥̅

𝑠
. 

Die Verwendung z-transformierter Variablen kann im Rahmen linearer Regressionsmodelle 

(Kapitel 9-12) für die Interpretation von Ergebnissen nützlich sein. 

 

Abbildung 3.19. Das Menü „Descriptives“ unter Analyze >> Descriptive Statistics bietet eine einfache 

Möglichkeit eine z-Transformation von Variablen durchzuführen. 

Kreuztabellen 

Kreuztabellen sind eine nützliche Möglichkeit um die Verteilung einer kategorialen Variablen über 

mehrere Kategorien einer anderen kategorialen Variablen hinweg darzustellen. Kreuztabellen können 

unter Analyze >> Descriptive Statistics >> Crosstabs generiert werden. Unter „Cells…“ können dort 

zudem relative Häufigkeiten für Zeilen, Spalten oder alle Zellen der sich ergebenden Kreuztabelle 

angefordert werden. Abbildung 3.20 zeigt die nötigen Eingaben für die Erstellung einer Kreuztabelle 

für die beiden Variablen geschlecht und hauptfach. Abbildung 3.21 zeigt die in der Ausgabe 

resultierende Kreuztabelle. 
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Abbildung 3.20. Erstellung einer Kreuztabelle (SPSS Version 29; in SPSS Version 30 ist in diesem 

Menü anstelle von „Row(s)“ die Bezeichnung „TargetList“ zu finden; lassen Sie sich davon nicht 

beirren, wie alles im Leben, verändern sich auch Programme und Software mit der Zeit bzw. mit 

fortschreitender Versionsnummer). 

 

Abbildung 3.21. Resultierende Kreuztabelle für die Variablen geschlecht und hauptfach in der Schule. 
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Maße des Zusammenhangs zwischen metrischen Variablen – Korrelationen 

Bisher haben wir hauptsächlich deskriptive Statistiken betrachtet, die zur Charakterisierung der Lage 

(z.B. Mittelwert oder Median) oder der Streuung (z.B. Standardabweichung) oder anderer 

Charakteristika einzelner metrischer (oder auch kategorialer) Variablen verwendet werden. Mit den 

Kreuztabellen im vorhergehenden Abschnitt haben wir eine einfache Möglichkeit kennengelernt, 

eventuelle Zusammenhänge zwischen kategorialen Variablen zu veranschaulichen. Manchmal sind wir 

allerdings auch an Zusammenhängen zwischen metrischen Variablen interessiert. Um Maßzahlen zur 

Beschreibung solcher Zusammenhänge geht es in diesem Abschnitt. Die Eigenschaften und 

Unterschiede dieser Maßzahlen – und auch wie sie mithilfe von SPSS berechnet werden können – 

werden allesamt an folgendem Beispiel illustriert. 

Im Datensatz „Kap3daten2.sav“ sind Gewicht und Größe für 20 (sehr athletische) Männer und 

Frauen gegeben, siehe Abbildung 3.22. Im Falle einer durchwegs sehr athletischen Stichprobe ist es 

naheliegend, dass zwischen Größe und Gewicht ein enger Zusammenhang besteht. Um uns von diesem 

Zusammenhang im wahrsten Sinne des Wortes ein Bild zu machen, können wir, bevor wir versuchen 

den Zusammenhang zu quantifizieren (d.h., in eine Zahl zu fassen), in SPSS ein sogenanntes 

Streudiagramm anfordern. Dazu wählen wir in der geöffneten Datendatei unter „Graphs“ den ersten 

Punkt „Chart Builder…“ aus. Falls wir letzteren noch nie verwendet haben, erscheint nun eine Meldung, 

die uns erklärt, dass es für ein angemessenes Funktionieren des „Chart Builder“-Assistenten wichtig ist, 

dass die Skalenniveaus aller Variablen korrekt angegeben werden. Sollten wir daran noch Zweifel 

haben, können wir über die Schaltfläche „Define Variable Properties…“ zu einem Assistenten gelangen, 

der uns dabei helfen kann, passende Skalenniveaus für unsere Variablen zu definieren. Wenn wir uns 

allerdings wie hier sicher sind, dass wir bei der Definition der Variablen alles richtig gemacht haben, 

können wir auch einfach auf die Schaltfläche „OK“ klicken, um zum eigentlichen „Chart Builder“-

Assistenten zu gelangen. Durch Anwählen der Option „Don’t show this dialog again“ können wir das 

Erscheinen dieses Dialogfensters bei der nächsten Auswahl des „Chart Builder“-Assistenten auch 

verhindern. 

Im schließlich geöffneten „Chart Builder“-Assistenten wählen wir unter der Rubrik „Gallery“ 

links unten „Scatter/Dot“ aus, und unter den daraufhin erscheinenden Optionen durch Doppelklick 
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„Scatter Plot“, siehe Abbildung 3.23. Schließlich ziehen wir die Variable Größe auf die x-Achse und 

die Variable Gewicht auf die y-Achse wie in Abbildung 3.23 illustriert. Anschließend klicken wir auf 

„Paste“ und führen die eingefügten Kommandozeilen in der Syntax aus. 

 

Abbildung 3.22. Datenansicht zum Datensatz „Kap3daten2.sav“. 

 

Abbildung 3.23. Anforderung eines Streudiagramms, in dem die Körpergröße auf der Abszisse (x-

Achse) und das Körpergewicht auf der Ordinate (y-Achse) abgetragen wird. 
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Wird zum ersten Mal eine Abbildung in SPSS erstellt, kann es sein, dass die Erstellung etwas 

länger dauert. Aber mit ein wenig Geduld sollten wir schließlich in der Ausgabe die Grafik erhalten, die 

in Abbildung 3.24 dargestellt ist. Wir sehen, dass für unsere Stichprobe in der Tat ein sehr enger 

Zusammenhang zwischen Körpergröße und -gewicht besteht: je größer eine Person, desto schwerer 

dürfte die Person in der Regel auch sein. Ausnahmen von dieser Regel sind im gegebenen Datensatz in 

der Tat Mangelware. 

Eine grafische Inspektion mittels eines Streudiagramms ist insbesondere bei Vermutung eines 

Zusammenhangs zwischen zwei metrischen Variablen eigentlich immer zu empfehlen (Anscombe, 

1973; siehe auch Übungsaufgabe 3.15). In diesem Fall überzeugt auch die graphische Darstellung bereits 

sehr deutlich vom tatsächlichen Bestehen eines solchen Zusammenhangs. Aber wie lässt sich dieser 

Zusammenhang nun auch in einer Maßzahl abbilden, d.h., quantifizieren? 

Um dies zu erläutern, denken wir kurz darüber nach, was wir eigentlich meinen, wenn wir sagen, 

dass zwischen zwei metrischen Variablen ein Zusammenhang besteht. Wir sagen, dass zwischen zwei 

metrischen Variablen ein Zusammenhang besteht, üblicherweise dann, wenn eher große Werte der einen 

Variablen mit eher großen (oder eher kleinen) Werten der anderen Variablen einhergehen und 

umgekehrt. Im Falle des in Abbildung 3.24 dargestellten Beispiels sagen wir genau deshalb, es scheint 

eindeutig ein Zusammenhang zwischen Größe und Gewicht zu bestehen, weil Personen mit einem eher 

größeren Gewicht auch eher größere Personen sind und umgekehrt eher leichtere Personen auch eher 

kleinere Personen sind. Wir würden von einem Zusammenhang auch dann sprechen, wenn der 

Zusammenhang gerade umgekehrt wäre, also eher kleiner Ausprägungen einer Variablen mit eher 

größeren Ausprägungen der anderen Variablen assoziiert wären. Solche Zusammenhänge werden 

manchmal auch als „negative“ Zusammenhänge bezeichnet, aber ebenfalls als Zusammenhänge. Von 

keinem Zusammenhang würden wir nur dann sprechen, wenn die Ausprägungen einer Variablen in 

keiner erkennbaren Form mit den Ausprägungen der anderen Variablen assoziiert wären. In „keiner 

erkennbaren Form“ impliziert auch, dass Zusammenhänge nicht unbedingt monoton oder gar linear sein 

müssen. Es kann z.B. sein, dass kleine und große Werte einer Variablen jeweils mit großen Werten der 

anderen Variablen assoziiert sind, und mittlere Werte hingegen mit kleinen Werten. In diesem Fall 

könnte u.U. ein sog. quadratischer Zusammenhang zwischen den Variablen vorliegen. 
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Abbildung 3.24. Streudiagramm für Körpergröße und -gewicht für den Datensatz „Kap3daten2.sav“. 

Im Folgenden werden wir uns lediglich mit der Quantifizierung von monotonen und 

insbesondere linearen Zusammenhängen befassen. Monotone Zusammenhänge bezeichnen 

Zusammenhänge der Form „je, desto“: je größer eine Variable, desto größer auch die andere (ein sog. 

positiver Zusammenhang); oder je kleiner eine Variable, desto größer die andere (ein sog. negativer 

Zusammenhang). Mit einem linearen Zusammenhang ist ein Zusammenhang gemeint, bei dem im Mittel 

für jedes Paar von Werten der beiden betrachteten Variablen ein Unterschied zwischen dem Wert der 

einen Variablen und typischen Werten für diese Variable auf einer für diese Variable typischen Skala 

mit entsprechenden Unterschieden zwischen dem Wert der anderen Variablen und typischen Werten für 

die andere Variablen auf einer für die andere Variable typischen Skala einhergeht. Da das äußerst 

kompliziert klingt, ist es vermutlich eine gute Idee, diese Erläuterung noch einmal schrittweise am 

Beispiel der Körpergrößen und -gewichte zu erläutern. 

Abbildung 3.24 zeigt uns, dass Körpergrößen für die untersuchte Stichprobe zwischen ca. 1.50 

m und 2.10 m variieren. Körpergewichte variieren hingegen auf einer ganz anderen Skala: erstens 

variieren sie nicht in Metern sondern in Kilogramm, und auch zahlenmäßig in einem völlig anderen 

Intervall: in etwa von 40 kg bis 140 kg. Auch bei typischen Körpergrößen und -gewichten handelt es 

sich um völlig unterschiedliche Größen. Wählen wir als Maß für eine typische Körpergröße den 
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Mittelwert, so erhalten wir M = 1.77 m (mit einer Standardabweichung von SD = 0.15 m), für das 

typische Gewicht, ebenfalls in Form des Mittelwerts, erhalten wir M = 85.70 kg (mit einer 

Standardabweichung von SD = 29.40 kg). Die Standardabweichungen zeigen wiederum an, dass die 

beiden Größen typischerweise über völlig andere Bereiche variieren. Allerdings sprechen wir von einem 

linearen Zusammenhang zwischen den beiden Variablen genau dann, wenn eine Variation der einen 

Variablen auf der für sie typischen Skala mit einer proportionalen Variation der anderen Variablen auf 

der für die andere Variable typischen Skala einhergeht, und das über den gesamten Bereich beider 

Variablen hinweg. Abbildung 3.24 zeigt, dass Personen, die in etwa 10 cm größer sind als andere 

Personen, in etwa 20 kg schwerer sind als andere Personen. D.h. ein Größenunterschied von 1 cm geht 

in etwa mit einem Gewichtsunterschied von 2 kg einher und das in guter Näherung über die ganze 

Bandbreite an Größen von 1.50 m bis 2.10 m. Genau das ist gemeint, wenn von einem linearen 

Zusammenhang zwischen zwei Variablen die Rede ist: ändert sich eine Variable um einen bestimmten 

Wert, so verändert sich die andere um einen dazu proportionalen Wert, unabhängig davon, wo die 

Variablen in ihrer Bandbreite an möglichen Werten liegen. Dass dieser Zusammenhang nicht für jedes 

Wertepaar in Abbildung 3.24 exakt gilt, sondern lediglich approximativ und „im Großen und Ganzen“, 

hat damit zu tun, dass die Größe für das Gewicht zwar sicherlich ein bestimmender Faktor ist, aber nicht 

der einzige, sondern es noch andere Faktoren gibt, die dafür eine Rolle spielen, über die wir allerdings 

keine Informationen haben. Diese zusätzlichen, unbekannten Faktoren können den Zusammenhang in 

beide Richtungen beeinflussen (d.h., zu etwas geringerem oder größeren Gewicht bei gleicher Größe 

führen) und sorgen daher für eine Schwankung um den im Mittel sehr deutlichen linearen 

Zusammenhang. 

Zur Quantifizierung dieses linearen Zusammenhangs müssen wir nun nur noch das oben 

Gesagte in uns bereits bekannten statistischen Größen zum Ausdruck bringen. Zuerst möchten wir 

wissen, ob eher große Abweichungen von der typischen Körpergröße auch mit eher großen 

Abweichungen vom typischen Gewicht einhergehen. Dazu können wir uns in einem ersten Schritt 

einfach einmal alle Abweichungen für beide Variablen von deren typischen Ausprägungen berechnen. 

Dies können wir tun, indem wir von jeder einzelnen Variablenausprägung den Mittelwert der Variablen 

abziehen. Dies wird auch als Zentrierung bezeichnet und könnte in SPSS z.B. unter Transform >> 
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Compute Variable… durchgeführt werden. Für diesen Datensatz wurde diese Zentrierung bereits 

vorgenommen, siehe die beiden Variablen Größe_zentriert und Gewicht_zentriert (siehe auch die 

beiden Spalten ganz rechts in Abbildung 3.22). An den beiden in Abbildung 3.22 dargestellten Spalten 

mit den Ausprägungen für diese beiden Variablen erkennen wir sehr gut den Zusammenhang zwischen 

diesen beiden Abweichungen: weicht die Größe sehr weit (auf der Skala für die Größe) nach oben hin 

vom typischen Wert ab (z.B. der Wert 0.31 in Zeile 4), so weicht auch das Gewicht sehr weit nach oben 

(auf der Skala für das Gewicht) vom typischen Gewicht ab (der Wert 54.30 in Zeile 4). Weicht um 

gekehrt der Wert für die Größe sehr weit nach unten von der typischen Größe ab (z.B. der Wert -0.23 in 

Zeile 12), so weicht auch das Gewicht sehr weit nach unten ab (der Wert -37.70 in derselben Zeile). 

Dies gilt „im Großen und Ganzen“ für alle Werte und jeweils proportional zur Größe der Abweichung 

vom jeweils typischen Wert. Um diesen Zusammenhang in eine einzelne Zahl zu fassen, könnte man 

nun die Produkte der einzelnen Zahlenpaare bilden, aufsummieren, und schließlich durch die Anzahl 

der Zahlenpaare dividieren. Dies wäre in der Tat eine Quantifikation des mittleren Zusammenhangs 

zwischen den beiden Variablen. Wird die Körpergröße der 𝑖-ten Person mit 𝑥𝑖 und das Gewicht mit 𝑦𝑖 

bezeichnet, so würde die Formel für die soeben beschrieben Größe lauten: 

𝑐𝑜𝑣𝑒𝑚𝑝(𝑥, 𝑦) =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

. 

Diese Größe wird als empirische Kovarianz zwischen den Variablen 𝑥 und 𝑦 bezeichnet. Der 

Zusatz „empirisch“ bezieht sich darauf, dass es sich dabei um die Kovarianz zwischen den konkreten 

Werten der beiden Variablen in der Stichprobe handelt (und nicht um die Schätzung der Kovarianz in 

der Population, aus der diese Stichprobe gezogen wurde). In der Tat handelt es sich bei der Kovarianz 

um eine Größe, die den linearen Zusammenhang zwischen zwei Variablen erfasst: je größer der lineare 

Zusammenhang, desto größer die Kovarianz. Das Vorzeichen der Kovarianz erfasst auch die Richtung 

des Zusammenhangs: gehen Abweichungen von typischen Werten nach oben in 𝑥 typischerweise mit 

Abweichungen von typischen Werten nach oben in 𝑦 einher, so sind die einzelnen Summanden in der 

Formel für die Kovarianz vorwiegend positiv und die Kovarianz insgesamt typischerweise eher positiv; 

gehen umgekehrt Abweichungen von typischen Werten nach oben in 𝑥 mit Abweichungen von 
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typischen Werten nach unten in 𝑦 einher, so sind die einzelnen Summanden in der Formel für die 

Kovarianz vorwiegend negativ und die Kovarianz insgesamt typischerweise eher negativ. 

Allerdings hat die Kovarianz für die Quantifizierung des linearen Zusammenhangs den 

gravierenden Nachteil, dass sie von den Einheiten abhängt, mit denen die beiden Variablen erfasst 

wurden. Wird die Körpergröße in unserem Beispiel etwa in cm statt in m angegeben, so sieht man an 

der Formel oben, dass sich die Kovarianz schlagartig um den Faktor 100 verändern würde. Dies wäre 

aber nicht der Fall, weil der Zusammenhang zwischen Größe und Gewicht etwa größer geworden wäre; 

im Gegenteil, der Zusammenhang ist nach wie vor derselbe, nur die Maßeinheit (für eine der beiden 

Variablen) hat sich verändert. D.h., für ein brauchbares Maß des Zusammenhangs zwischen zwei 

Variablen verlangen wir zudem, dass es unabhängig von den Einheiten ist, mit welchen diese Variablen 

erfasst werden. 

Diesen Aspekt haben wir allerdings oben beim Versuch zu beschreiben, was wir mit einem 

linearen Zusammenhang überhaupt meinen, bereits mit der Änderung einer Variablen auf ihrer 

jeweiligen Skala bereits charakterisiert. D.h., wir betrachten nicht nur die Abweichungen der Variablen 

von ihren jeweiligen typischen Werten an sich, sondern diese Abweichungen auf der für die Variable 

typischen Skala. Mit letzterer ist der Bereich an Werten gemeint, in dem Ausprägungen der jeweiligen 

Variablen typischerweise liegen. Eine Größe um diesen Bereich zu quantifizieren haben wir mit der 

Standardabweichung auch bereits kennengelernt. D.h., wenn wir die oben berechneten Abweichungen 

jeweils durch die Standardabweichung der jeweiligen Variablen dividieren, dann die Produkte bilden, 

und schließlich deren Mittelwert berechnen, bekommen wir eine Maßzahl, die den Zusammenhang 

zwischen beiden Variablen einheitenunabhängig quantifiziert. Der mathematische Ausdruck für diese 

Maßzahl lautet 

𝑟 =
1

𝑛
∑

(𝑥𝑖 − 𝑥̅)

𝑠𝑥,𝑒𝑚𝑝

(𝑦𝑖 − 𝑦̅)

𝑠𝑦,𝑒𝑚𝑝

𝑛

𝑖=1

=
1

𝑛
∑ 𝑧𝑥,𝑖𝑧𝑦,𝑖

𝑛

𝑖=1

. 

Diese Maßzahl wird als Pearsons Produkt-Moment-Korrelationskoeffizient oder einfach als 

Pearson Korrelationskoeffizient (manchmal auch nur als Pearson Korrelation) bezeichnet. Mit 𝑠𝑥,𝑒𝑚𝑝 

und 𝑠𝑦,𝑒𝑚𝑝 werden dabei die empirischen Standardabweichungen bezeichnet, mit 𝑧𝑥,𝑖 und 𝑧𝑦,𝑖 die z-
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transformierten Variablen 𝑥 und 𝑦. D.h., der Pearson Korrelationskoeffizient für die Variablen 𝑥 und 𝑦 

entspricht der Kovarianz der beiden z-transformierten Variablen. In der Tat werden durch die z-

Transformation (vgl. den entsprechenden Abschnitt oben) beide Operationen durchgeführt, auf die es 

uns für die Quantifizierung des linearen Zusammenhangs ankommt: zuerst die Zentrierung am 

Mittelwert und anschließend die Standardisierung (oder Normierung) an der Skala der Variablen (d.h. 

am für die Variable typischen Variationsbereich). Durch die Standardisierung wird schließlich auch der 

Wertebereich des Korrelationskoeffizienten auf das Intervall von -1 bis 1 beschränkt. Besteht zwischen 

zwei Variablen ein exakter positiver linearer Zusammenhang ist der Koeffizient gleich 1, ist der 

Zusammenhang exakt negativ linear ist der Koeffizient -1. Besteht überhaupt kein linearer 

Zusammenhang ist der Koeffizient gleich 0. Alle anderen Fälle liegen zwischen diesen Werten. 

Im Vergleich zu allem bisherigen ist die Berechnung des Pearson Korrelationskoeffizienten mit 

SPSS äußerst einfach. Dazu schieben wir im sich öffnenden Menü nach Auswahl von Analyze >> 

Correlate >> Bivariate… einfach alle Variablen, zwischen denen wir den Pearson 

Korrelationskoeffizienten berechnen möchten, in das Feld „Variables“, siehe Abbildung 3.25. Wie wir 

in der Abbildung sehen, ist der Pearson Korrelationskoeffizient bereits vorab ausgewählt. In diesem 

Menü könnten wir auch einen der beiden anderen Korrelationskoeffizienten berechnen lassen, die im 

Folgenden noch kurz erläutert werden. Anschließend klicken wir wieder auf „Paste“ und führen die 

neuen Kommandozeilen in der Syntaxdatei aus. Die daraufhin erzeugte Ausgabe ist in Abbildung 3.26 

dargestellt. 

 

Abbildung 3.25. Berechnung des Pearson Korrelationskoeffizienten mit SPSS. 
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Abbildung 3.26. Ausgabe für den Pearson-Korrelationskoeffizienten zwischen der Körpergröße und 

dem Körpergewicht. 

Wir sehen, dass zwischen Körpergröße und -gewicht in der gegeben Stichprobe in der Tat ein 

sehr starker linearer Zusammenhang besteht, der Pearson Korrelationskoeffizient ist fast maximal, r = 

.94. In der Ausgabe sehen wir zusätzlich noch das Ergebnis eines Signifikanztests für die Nullhypothese, 

dass der Korrelationskoeffizient in der Population gleich Null ist. Mit Signifikanztests werden wir uns 

ab dem nächsten Kapitel im Detail befassen. Hier sei nur erwähnt, dass es sich beim hier durchgeführten 

Test um einen t-Test mit 𝑛 − 2 Freiheitsgraden handelt, wobei 𝑛 = 20 hier den Stichprobenumfang 

bezeichnet. Bestünde die Forschungsfrage darin, ob sich der Pearson Korrelationskoeffizient für die 

beiden Variablen in der Population von Null unterscheidet, könnte das Ergebnis des Signifikanztests in 

diesem Fall (unter der Annahme eines Signifikanzniveaus von .005) wie folgt berichtet werden: „Der 

Pearson Korrelationskoeffizient für den linearen Zusammenhang zwischen Körpergröße und -gewicht 

unterscheidet sich (mit 𝛼 = .005) signifikant von Null, r(18) = .94, p < .001. Gemäß Cohen (1988) 

handelt es sich um einen großen Effekt.“ Es ist üblich beim Bericht des Pearson 

Korrelationskoeffizienten die führende Null (d.h., die „0“ vor dem Dezimaltrennzeichen) wegzulassen, 

da sein Wertebereich zwischen -1 und 1 liegt. Zudem wurde im Ergebnisbericht auf die Heuristiken für 

Effektstärken von Cohen (1988) Bezug genommen. Effektstärken werden wir in den folgenden Kapiteln 

noch im Detail besprechen. Für den Moment genügt es festzuhalten, dass es sich auch beim Pearson 

Korrelationskoeffizienten um eine sog. Effektstärke handelt. Gemäß Cohens Heuristiken (1988) werden 

Korrelationskoeffizienten ab 0.1 als kleine, ab 0.3 als mittlere, und ab 0.5 als große Effekte bezeichnet. 

Dies gilt auch für einige andere Korrelationskoeffizienten, von welchen wir unten noch Spearmans 

Rangkorrelationskoeffizienten und Kendalls tau erläutern.  
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Bezüglich Pearsons Korrelationskoeffizienten ist es wichtig, sich noch einmal einige 

wesentliche Einschränkungen vor Augen zu führen. Der Koeffizient ist, wie oben im Detail erläutert, 

eine Maßzahl für den linearen Zusammenhang zwischen zwei Variablen. Nichtlineare Zusammenhänge 

(z.B. quadratische Zusammenhänge) können damit nicht beschrieben werden. Der Koeffizient ist zudem 

sehr empfindlich für sog. Ausreißer, d.h. Datenpunkte, die im Streudiagramm weit abseits der 

Punktewolke aller anderen Datenpunkte liegen. Diese Einschränkung kann für andere 

Korrelationskoeffizienten (wie z.B. die beiden unten beschriebenen) deutlich geringer ausfallen, 

allerdings ist dabei zu beachten, dass diese anderen Koeffizienten nicht dasselbe erfassen wie Pearsons 

Korrelationskoeffizient (d.h. nicht unbedingt den linearen Zusammenhang zwischen zwei Variablen, 

siehe die Erläuterung im Zusammenhang mit Kendalls tau unten). 

Für alle Korrelationskoeffizienten gilt, dass sie keine Aussagen über einzelne Personen 

erlauben. Sie beschreiben lediglich im Mittel Zusammenhänge zwischen zwei Variablen; d.h. „im 

Großen und Ganzen“ und nicht „im Einzelnen und Partikulären“. Einzelne Fälle (vgl. auch wiederum 

mit der Thematik Ausreißer) können mitunter weit von mittleren Zusammenhängen abweichen. 

Ebenfalls gilt für alle Korrelationskoeffizienten, dass sich aus den von ihnen beschriebenen 

Zusammenhängen keine kausalen Aussagen ableiten lassen. Handelt es sich nicht um einen rigoros 

kontrollierten, experimentellen Versuchsaufbau, gibt es grundsätzlich meist viele Erklärungen für das 

Zustandekommen eines Zusammenhangs zwischen zwei Variablen (Bühner et al., 2025). So kann es 

etwa in der Tat sein, dass Änderungen in der Variable 𝑥 Änderungen in der Variablen 𝑦 verursachen. 

Die beiden Variablen hängen aber auch miteinander zusammen (= kovariieren), wenn umgekehrt 

Änderungen in 𝑦 Änderungen in 𝑥 verursachen. Es kann auch beides gleichzeitig (zu unterschiedlichen 

Anteilen) der Fall sein, d.h., Variablen können sich gegenseitig ursächlich beeinflussen (z.B. depressive 

Stimmung und Schlafmangel, siehe Bühner et al., 2025). Zudem kann eine unbekannte Drittvariable 

sowohl 𝑥 als auch 𝑦 verursachen, was wiederum in einem Zusammenhang zwischen den beiden 

Variablen resultiert. Schließlich kann auch eine Reihe unbekannter Variablen ursächlich mit den beiden 

Variablen in Verbindung stehen und einem Zusammenhang zwischen 𝑥 und 𝑦 zugrunde liegen (Bühner 

et al., 2025). 
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Abschließend seien nun noch zwei weitere Korrelationskoeffizienten zur Beschreibung von 

Zusammenhängen zwischen zwei Variablen kurz erläutert. Beide Korrelationskoeffizienten erfassen 

lediglich monotone Zusammenhänge (nicht unbedingt aber lineare Zusammenhänge); nicht-monotone 

(z.B. quadratische) Zusammenhänge werden durch sie nicht erfasst. 

Bei Spearmans Rangkorrelationskoeffizienten handelt es sich um einen 

Korrelationskoeffizienten, der auch dann verwendet werden kann, wenn beide Variablen oder eine von 

beiden Variablen lediglich auf Ordinalskalenniveau vorliegen. Betrachten wir beispielsweise eine 

Umfrage zum Thema Soziale Medien, in der Personen unterschiedlichen Alters nach der Häufigkeit des 

Konsums sozialer Medien befragt werden. Das Alter wird dabei mittels einer metrischen Variablen 

erhoben, die Häufigkeit des Konsums sozialer Medien allerdings nur mit einer Skala mit den 

Abstufungen „1 = so gut wie nie“, „2 = einmal pro Monat“, „3 = einmal pro Woche“, „4 = täglich“, „5 

= öfters täglich, aber weniger als eine Stunde“, „6 = mehrere Stunden täglich“. Bei letzterer Skala 

handelt es sich offensichtlich nicht um eine Intervallskala und dementsprechend auch nicht um eine 

metrische Variable. Allerdings kann es dennoch interessant sein, ob zwischen dem Alter der befragten 

Personen und der ordinalen Variable Häufigkeit (des Konsums sozialer Medien) ein monotoner 

Zusammenhang besteht, d.h., ob Personen desto häufiger/seltener soziale Medien konsumieren, je 

jünger/älter sie sind. Um diese Frage zu erhellen, könnte in diesem Fall Spearmans 

Rangkorrelationskoeffizient verwendet werden. 

Zur Berechnung von Spearmans Rangkorrelationskoeffizienten werden zuerst die Werte beider 

Variablen jeweils für jede der beiden Variablen in Ränge umgerechnet. Für eine intervallskalierte 

Variable (etwa das Alter) funktioniert die Umrechnung in Ränge wie folgt. Angenommen die Stichprobe 

umfasse lediglich die folgenden sieben Personen mit einem jeweiligen Alter von 18, 21, 19, 36, 25, 67, 

und 53 Jahren. Diese Altersangaben werden dann in Ränge umgerechnet, indem dem geringsten Alter 

der Wert 1, dem zweitgeringsten Alter der Wert 2 usw. vergeben wird. D.h., die zu den oben 

angegebenen Alterswerten gehörigen Ränge wären 1, 3, 2, 5, 4, 7, 6. Liegen sog. Rangbindungen vor, 

d.h. haben etwa im Beispiel mehrere Personen dasselbe Alter, z.B. 18, 21, 18, 36, 25, 25, 25, wird ihnen 

der durchschnittliche Rang der Positionen zugewiesen, die sie eingenommen hätten. D.h., in letzterem 

Fall wären die resultierenden Rangwerte für die gegebenen Alterswerte 1.5, 3, 1.5, 7, 4, 4, 4. Im Fall der 
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ordinalskalierten Variablen liegen zwar bereits so etwas wie Rangwerte vor, allerdings weisen in diesem 

Fall viele Fälle (Personen) dieselbe Variablenausprägung, d.h. Rangbindungen, auf. 

Wurden beide Variablen in Rangwerte umgerechnet, kann schlichtweg der Pearson 

Korrelationskoeffizient für die in Rangwerte umgerechneten Variablen berechnet werden. Der 

resultierende Wert entspricht dann dem Spearman Rangkorrelationskoeffizienten, der üblicherweise mit 

dem Symbol rS bezeichnet wird. Spearmans Rangkorrelationskoeffizient erfasst die Monotonie von 

Zusammenhängen insofern, dass er abbildet, dass positive Änderungen der einen Variablen mit 

positiven Änderungen der anderen Variablen einhergehen oder positive Änderungen der einen Variablen 

negativen Änderungen der anderen Variablen. Wie Pearsons Korrelationskoeffizient hat auch 

Spearmans Rangkorrelationskoeffizient im ersten Fall ein positives, im zweiten Fall ein negatives 

Vorzeichen. Genauso wie Pearsons Korrelationskoeffizient ist Spearmans Rangkorrelationskoeffizient 

auf den Bereich -1 bis 1 beschränkt. Im Gegensatz zu Pearsons Korrelationskoeffizient ist Spearmans 

Rangkorrelationskoeffizient allerdings weniger empfindlich auf Ausreißer. Allerdings können einige 

wenige ungewöhnliche Datenpunkte Spearmans Rangkorrelationskoeffizienten immer noch stark 

beeinflussen (siehe insbesondere Übungsaufgabe 3.16). 

Noch etwas robuster gegenüber Ausreißern und gleichzeitig ein präziseres Maß für die 

Monotonie von Zusammenhängen zwischen zwei Variablen ist Kendalls tau (Wilcox, 2017). Für 

Kendalls tau, üblicherweise auch bezeichnet mit dem gleichnamigen griechischen Buchstaben τ, werden 

aus allen Datenpunkten alle möglichen Paare an Datenpunkten gebildet. Ein Paar von Datenpunkten, 

bestehend aus den Datenpunkten (𝑥𝑖, 𝑦𝑖) und (𝑥𝑗, 𝑦𝑗), wird genau dann als konkordant bezeichnet, wenn 

für 𝑥𝑖 < 𝑥𝑗 auch gilt, dass 𝑦𝑖 < 𝑦𝑗, bzw. für 𝑥𝑖 > 𝑥𝑗 auch gilt, dass 𝑦𝑖 > 𝑦𝑗 (d.h., wenn sich 𝑥 nach 

oben/unten ändert, ändert sich 𝑦 in die gleiche Richtung). Hingegen wird das Datenpunktepaar als 

diskordant bezeichnet, wenn für 𝑥𝑖 < 𝑥𝑗 gilt, dass 𝑦𝑖 > 𝑦𝑗, bzw. für 𝑥𝑖 > 𝑥𝑗 gilt, dass 𝑦𝑖 < 𝑦𝑗 (d.h., wenn 

sich 𝑥 nach oben/unten ändert, ändert sich 𝑦 in die jeweils andere Richtung). Anschließend wird 

zwischen konkordanten und diskordanten Paaren die Differenz gebildet und durch die Anzahl aller 

Datenpunktepaare dividiert. Sind alle Paare konkordant, so ist Kendalls tau gleich 1, sind alle Paare 

diskordant, so ist Kendalls tau gleich -1. Gibt es gleich viele diskordante wie konkordante Paare, dann 
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ist Kendalls tau gleich Null. Alle anderen Fälle liegen zwischen diesen Werten. Damit ist Kendalls tau 

ein sehr anschauliches Maß für die Monotonie des Zusammenhangs zwischen zwei Variablen. 

Sind Rangbindungen vorhanden, sind manche Datenpunktepaare entsprechend der obigen 

Definitionen weder konkordant noch diskordant. Diesem Umstand muss dann bei der Berechnung von 

Kendalls tau Rechnung getragen werden (Kendall, 1945). Der Korrelationskoeffizient für diesen Fall 

wird als Kendalls tau-b mit dem Symbol τb bezeichnet. 

In SPSS können sowohl Spearmans Rangkorrelationskoeffizient als auch Kendalls tau-b in 

demselben Menü angefordert werden, das wir schon zur Berechnung von Pearsons 

Korrelationskoeffizienten verwendet haben, siehe Abbildung 3.25. Wählen wir dort für unsere 

Beispielfragestellung zu Körpergröße und -gewicht für die im Datensatz „Kap3daten2.sav“ gegebene 

Stichprobe beide Korrelationskoeffizienten aus, fügen die entsprechenden Kommandozeilen in die 

Syntax ein und führen diese aus, so erhalten wir die in Abbildung 3.27 dargestellte Ausgabe. Wir sehen, 

dass auch diese beiden Korrelationskoeffizienten klar auf einen Zusammenhang zwischen den beiden 

Variablen hinweisen. Am Unterschied untereinander sowie zu den Werten für Pearsons 

Korrelationskoeffizienten (Abbildung 3.26) erkennen wir aber auch, dass die beiden Koeffizienten nicht 

dieselbe Art von Zusammenhang erfassen. 

 

Abbildung 3.27. Ausgabe für Spearmans Rangkorrelationskoeffizienten sowie Kendalls tau-b. 

Für weitere Korrelationskoeffizienten, die in manchen Datensituationen bzw. für manche 

Fragestellungen durchaus angemessener sein können (z.B. Zusammenhang zwischen einer künstlich 
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dichotomen und einer metrischen Variablen oder Zusammenhänge für typische Datenpunkte), wird auf 

entsprechende Fachliteratur verwiesen (siehe z.B. Bühner & Ziegler, 2017; Wilcox, 2017, 2022). 

Bericht deskriptiver Statistiken 

Für kategoriale Variablen werden im Rahmen der Charakterisierung von Stichproben meist schlicht 

Häufigkeiten berichtet (eventuell auch mittels Balkendiagrammen dargestellt). Bei großen Stichproben 

verschaffen oft relative Häufigkeiten einen besseren Überblick über die Verteilung mehrerer Kategorien 

über die Stichprobe hinweg. Bei kleinen Stichproben kann manchmal die Angabe absoluter 

Häufigkeiten ein treffenderes Bild der Verhältnisse geben (z.B. 3 von 10 befragten Personen anstelle 

von 30% der befragten Personen). Unter Umständen kann auch der Modalwert bei kategorialen 

Variablen von Interesse sein (z.B. hinsichtlich der Frage „Was war das beliebteste der drei Schulfächer?“ 

in unserer Stichprobe). Hier ist auch wichtig zu bedenken, dass es bei wenigen Kategorien auch sein 

kann, dass es mehrere Modalwerte gibt. 

Zur Charakterisierung metrischer Variablen sollte zumindest eine Maßzahl der Lage (z.B. 

Mittelwert) und eine Maßzahl der Streuung (typischerweise Standardabweichung) angegeben werden. 

Wenn empirische Verteilungen ausgeprägte Schiefe oder Wölbung aufweisen ist es zusätzlich ratsam, 

diese etwa mittels geeigneter Maßzahlen zu charakterisieren. Oft sagt aber auch ein Bild mehr als 

tausend Worte (oder Zahlen). Bei außergewöhnlichen Verteilungen (z.B. mit zwei ausgeprägten 

Maxima, d.h. im Falle einer sog. bimodalen Verteilung) hilft häufig eine geeignete grafische Darstellung 

wie ein Histogramm (weshalb ist in diesem Fall ein Boxplot keine geeignete Wahl?) deutlich mehr als 

eine Liste von Maßzahlen (geeignete Maßzahlen können aber dennoch den visuellen Eindruck einer 

grafischen Darstellung unterstützen bzw. ein Verstehen des Dargestellten erleichtern/ermöglichen). 

Histogramme können wie Balkendiagramme über Analyze >> Descriptive Statistics >> Frequencies… 

und dort unter „Charts…“ angefordert werden. 

Zur Charakterisierung von Zusammenhängen zwischen Variablen können Tabellen mit 

Korrelationskoeffizienten erstellt werden. Dabei ist allerdings zu betonen, dass für die Beurteilung des 

Zusammenhangs zwischen zwei Variablen häufig eine Abbildung deutlich erhellender sein kann als eine 

einzelne Maßzahl und auf die Inspektion entsprechender paarweiser Abbildungen deshalb keinesfalls 
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verzichtet werden sollte. Ein dahingehend illustratives Beispiel ist unten in Übungsaufgabe 3.15 

gegeben und beruht auf einer Publikation zur grundsätzlichen Bedeutung graphischer Darstellungen für 

statistische Analysen überhaupt (Anscombe, 1973). 

Format berichteter Maßzahlen 

Für Ergebnisberichte und im Allgemeinen für den Bericht statistischer Kennwerte oder Maßzahlen 

haben sich in der Psychologie verschiedene Standards etabliert. Ein weit verbreiteter Standard ist 

derjenige der American Psychological Association (APA), der im Rahmen dieser Übungen gleich 

mitbehandelt werden soll. 

Die wesentlichen Merkmale dieses Standards, die für uns im Rahmen dieser Übungen eine Rolle 

spielen werden, sind in Tabelle 3.1 illustriert. Es macht nichts, wenn Sie mit vielen der dort aufgeführten 

Symbole und Abkürzungen noch nichts anfangen können. Das wird sich im Lauf der verbleibenden 

Kapitel noch ganz von selbst (bzw. durch Üben, Üben und nochmal Üben) ändern. Im Wesentlichen ist 

zu beachten, dass statistische Kenngrößen kursiv zu setzen sind, Zahlen aber nicht, und, dass mit 

Ausnahme von p-Werten grundsätzlich auf zwei Nachkommastellen zu runden ist. Für p-Werte sind es 

drei Nachkommastellen und da sich dann ein Wert größer 0.999 oder kleiner 0.001 nicht mehr exakt 

angeben lässt, wird stattdessen p > .999 bzw. p < .001 geschrieben. Das ist eindeutig, da p-Werte 

bekanntlich nach unten durch 0 und nach oben durch 1 begrenzt sind. Bei Zahlen, bei denen das so ist 

(gilt z.B. auch für Korrelationskoeffizienten) wird zudem die führende 0 weggelassen, d.h. statt p = 

0.321 wird p = .321 geschrieben. Auch Tabellen selbst folgen einem bestimmten Format nach dem APA-

Standard, der mit der Form von Tabelle 3.1 illustriert wird. 
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Tabelle 3.1 

Kennwerte nach APA-Richtlinien (American Psychological Association, 2019) 

Kennwert Zeichen Darstellung Beispiel 

Mittelwert M M = x.xx M = 13.68 

Median Mdn Mdn = x.xx Mdn = 14.57 

Modus Mo Mo = x.xx Mo = 13.5 

Standardabweichung SD SD = x.xx SD = 2.48 

Standardfehler SE SE = x.xx SE = 1.50 

Freiheitsgrade df 
x 

(Ausnahme: x.xx) 

27 

(24.45) 

t-Wert t t(df) = x.xx t(38) = 2.89 

Cohens‘ d d d = x.xx d = 0.68 

F-Wert F F(df1,df2) = x.xx F(1, 121) = 37.46 

Partielles Eta-Quadrat ηp
2 ηp

2 = .xx ηp
2 = .06 

p-Wert p p = .xxx 

p > .999 

p = .567 

p = .032 

p < .001 

Pearson Korrelationen r r(df) = .xx r(120) = .35 

Spearman 

Korrelationen 
rs rs(df) = .xx rs(120) = .79 

Kendalls tau-b τb τb(df) = .xx τb(120) = -.71 

Partialkorrelationen rpart rpart(df/N-3) = .xx rpart(119) = -.17 

Chi-quadrat Chi2; χ2 χ2(df) = x.xx χ2(1) = 6.42 

Z-Werte z z = x.xx z = 1.54 

Anmerkung. Dies ist eine Tabelle, die nach APA-Richtlinien (American Psychological Association, 

2019) formatiert ist! Gemäß APA sollen neben der Durchnummerierung der Tabellen und der 

Vergabe eines Titels in kursiver Schrift auch nur horizontale und niemals vertikale Linien verwendet 

werden. 
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Übungsaufgaben 

Für die Beispiele 3.1-10 kann durchwegs mit der Datendatei „Kap3daten_bearbeitet.sav“ gearbeitet 

werden die Sie wiederum in dem elektronischen Ergänzungsmaterial (Engl.: electronic supplementary 

material) zu diesem Dokument finden können, das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Vergessen Sie nicht alle Arbeitsschritte in entsprechenden Syntaxdateien zu dokumentieren. Speichern 

Sie Syntax- und Ausgabedateien (sofern vorhanden) regelmäßig ab. 

Beispiel 3.1 

Stellen Sie sich vor, Sie möchten aus den Items mathe_mathe1, mathe_mathe2, und mathe_mathe3 eine 

Skala generieren, die das Merkmal „Affinität zu Mathematik und Statistik“ operationalisieren soll. Das 

heißt, bei dieser Skala handelt es sich um eine Variable, die dieses Merkmal quantifizieren soll: Personen 

mit niedriger Affinität zu Mathematik und Statistik sollen eine niedrige Zahl bei dieser Variablen haben, 

Leute mit einer hohen Affinität eine hohe Zahl. Schauen Sie sich die Labels der Items in der Datendatei 

genau an. Welche der Items werden Sie für eine Bildung so einer Skala umkodieren bzw. umpolen 

müssen? Erzeugen Sie dann für diese Items neue Variablen, die den umkodierten Items entsprechen. 

Beispiel 3.2 

Berechnen Sie eine Summenskala, die das Merkmal „Affinität zu Mathematik und Statistik“ numerisch 

abbilden soll. Verwenden Sie dazu die Items mathe_mathe1, mathe_mathe2, mathe_mathe3 bzw. 

entsprechend umkodierte Items. 

Beispiel 3.3 

Lassen Sie sich angemessene deskriptive Statistiken und grafische Darstellungen für die in Beispiel 3.2 

erstellte Skala ausgeben. 

Beispiel 3.4 

Polen/Kodieren Sie das Item statistikschmerzen um. 

Beispiel 3.5 

Berechnen Sie eine Mittelwertskala, die (wie schon in Beispiel 3.2) das Merkmal „Affinität zu 

Mathematik und Statistik“ numerisch abbilden soll. Verwenden Sie dazu die Items statistikliebe, 

mathematikliebe und statistikschmerzen bzw. entsprechend umkodierte Items. 

https://osf.io/9tcx3/
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Beispiel 3.6 

Lassen Sie sich angemessene deskriptive Statistiken und grafische Darstellungen für die in Beispiel 3.5 

erstellte Skala ausgeben. 

Beispiel 3.7 

Wie sind die Vorlieben für die Hauptfächer Deutsch, Englisch und Mathematik unter den befragten 

Personen verteilt? Lassen Sie sich dazu eine entsprechende Häufigkeitstabelle sowie eine Balkengrafik 

ausgeben. 

Beispiel 3.8 

Angenommen, Sie glauben, dass Personen, die in einer Beziehung sind, auch verliebt sind. Lassen Sie 

sich eine Kreuztabelle für die Variablen verliebt und beziehungsstatus ausgeben, um zu überprüfen, ob 

diese Vermutung rein deskriptiv für die erhobene Stichprobe erfüllt wird. 

Beispiel 3.9 

Lassen Sie sich für Alter, Körpergröße und Schuhgröße angemessene deskriptive Statistiken ausgeben. 

Wie groß sind Mittelwerte und Standardabweichungen für die drei Variablen? Sehen Sie ein mögliches 

Problem für die Interpretation der mittleren Körper- und Schuhgröße für diese Stichprobe? 

Beispiel 3.10 

Lassen Sie sich eine Kreuztabelle für die Schulabschlussnote in Mathematik und dem Hogwarts-Haus, 

dem sich die Befragten am ehesten zugehörig fühlen, ausgeben. 

Beispiel 3.11 

In Österreich, Deutschland und der Schweiz wurde eine (fiktive) Befragung zum Thema Vereinbarkeit 

von Familie und Beruf durchgeführt. Unglücklicherweise sind die Daten der drei Länder alle jeweils 

separat in einer SPSS Datei gespeichert. Fügen Sie die drei Datensätze „Österreich.sav“, 

„Deutschland.sav“ und „Schweiz.sav“, die Sie wiederum in dem elektronischen Ergänzungsmaterial 

(Engl.: electronic supplementary material) unter https://osf.io/9tcx3/ herunterladen können, zu einem 

großen Datensatz zusammen und speichern Sie diesen unter dem neuen Namen „dach.sav“ ab. Geben 

Sie an, von wie vielen Personen Daten im Gesamtdatensatz vorliegen. Geben Sie ferner an, wie viele 

Personen jeweils in den drei Ländern befragt wurden. 

https://osf.io/9tcx3/
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Als ich im Jahr 2023 zum ersten Mal die Lehrveranstaltung „Anwendung statistischer Verfahren 

am Computer“ an der Universität Graz abhalten durfte, konnte ich dankenswerterweise auf die 

Lernmaterialien einiger meiner Vorgänger:innen zurückgreifen. Darunter befanden sich diese drei 

Datensätze, die ich seitdem zu Lehr- und Lernzwecken (u.a. für dieses und die folgenden Beispiele) in 

einigen Hinsichten verändert und adaptiert habe. Leider enthalten die Datensätze keinerlei Hinweis 

darauf, wer sie ursprünglich erstellt hat. Sollte jemals jemand dieser Information habhaft werden, wäre 

ich äußerst dankbar, falls sie mit mir geteilt werden könnte, da ich dann jener Person oder jenen Personen 

die zustehende Würdigung und den verdienten Dank hier endlich nachtragen könnte. 

Beispiel 3.12 

Arbeiten Sie in diesem Beispiel mit dem Gesamtdatensatz, den Sie in Beispiel 3.11 erstellt haben. Falls 

Sie sich bei Ihrer Lösung für Beispiel 3.11 unsicher sind, können Sie auch den Datensatz „dach.sav“ 

verwenden, den Sie in dem elektronischen Ergänzungsmaterial (Engl.: electronic supplementary 

material) zu diesem Dokument finden können, das Sie unter https://osf.io/9tcx3/ herunterladen können.  

Um sich einen ersten Überblick über die Zusammensetzung der Gesamtstichprobe zu 

verschaffen, lassen Sie sich sinnvolle deskriptive Statistiken für die Variablen geschlecht, alter und 

bildung ausgeben. Wählen Sie dafür die Ihrer Meinung nach geeigneten statistischen Kennwerte. 

Charakterisieren Sie in Worten die Stichprobe hinsichtlich dieser Variablen. 

Sehen Sie sich schließlich noch die Variable m_dur an. Worum handelt es sich bei dieser 

Variablen? Lassen Sie sich geeignete statistische Kennwerte ausgeben. Was fällt Ihnen auf? 

Beispiel 3.13 

Arbeiten Sie in diesem Beispiel mit dem Gesamtdatensatz, den Sie in Beispiel 3.11 erstellt haben. Falls 

Sie sich bei Ihrer Lösung für Beispiel 3.11 unsicher sind, können Sie auch den bereits verfügbaren 

Datensatz „dach.sav“ verwenden (siehe Beispiel 3.12). 

Geben Sie an, wie viele Männer und Frauen pro Nation befragt worden sind. 

https://osf.io/9tcx3/
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Beispiel 3.14 

Arbeiten Sie in diesem Beispiel mit dem Gesamtdatensatz, den Sie in Beispiel 3.11 erstellt haben. Falls 

Sie sich bei Ihrer Lösung für Beispiel 3.11 unsicher sind, können Sie auch den bereits verfügbaren 

Datensatz „dach.sav“ verwenden (siehe Beispiel 3.12). 

Bei den Befragten wurde unter anderem erhoben, wie gerecht sie in ihrer Beziehung die 

Aufteilung verschiedener Aspekte der Hausarbeit einschätzen: die Aufteilung der Haushaltsarbeit 

(Kochen, Putzen, Wäsche waschen etc.) und die Aufteilung der Kinderbetreuung. Um die allgemeine 

Einschätzung der Gerechtigkeit in einer Beziehung abschätzen zu können, soll eine Skala aus den beiden 

entsprechenden Items gebildet werden. Bilden Sie hierfür sowohl den Mittelwert (nennen Sie die 

resultierende Skala justice_mean) als auch die Summe (nennen Sie die resultierende Skala justice_sum) 

aus den beiden Variablen und geben Sie für beide jeweils Mittelwert und Standardabweichung an. 

Beispiel 3.15 

Im Datensatz „anscombe.sav“ sind vier Paare von Variablen gegeben, die jeweils mit 𝑥𝑖 und 𝑦𝑖 mit 𝑖 =

1, … ,4 bezeichnet sind. Erzeugen Sie für jedes Variablenpaar (𝑥𝑖, 𝑦𝑖) ein Streudiagramm, in dem Sie 𝑥𝑖 

auf der x-Achse und 𝑦𝑖 auf der y-Achse auftragen. Berechnen Sie zudem für jedes Variablenpaar den 

Pearson Korrelationskoeffizienten. Was fällt Ihnen auf? Diskutieren Sie Ihr Ergebnis. Für welches der 

vier Variablenpaare erscheint es Ihnen sinnvoll, den Zusammenhang zwischen den beiden Variablen 

mittels Pearsons Korrelationskoeffizienten zu charakterisieren? 

Beispiel 3.16 

Im Datensatz „outliers.sav“ sind drei Variablenpaare gegeben. Alle drei Variablenpaare beziehen sich 

auf dieselben Datenpunkte für das Variablenpaar (𝑥, 𝑦). Für das Variablenpaar (𝑥𝑤𝑜, 𝑦𝑤𝑜) für lediglich 

zwei Datenpunkte von den Datenpunkten für das Variablenpaar (𝑥, 𝑦) entfernt. Für das Variablenpaar 

(𝑥𝑤𝑜2, 𝑦𝑤𝑜2) wurden schließlich noch zwei weitere Datenpunkte entfernt. Erstellen Sie drei 

Streudiagramme, um sich veranschaulichen welche Datenpunkte jeweils entfernt wurden. Ermitteln Sie 

dann für jedes der drei Variablenpaare sowohl den Pearson Korrelationskoeffizienten als auch 

Spearmans Rangkorrelationskoeffizienten und Kendalls tau-b. Vergleichen Sie die Ergebnisse. Wie 

wirkt sich das Entfernen einzelner Punkte jeweils auf die Koeffizienten aus? 
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Beispiel 3.17 

In der Datei „sterne.sav“ sind die Logarithmen der Oberflächentemperatur und der Leuchtkraft von 47 

Sternen gegeben. Zwischen dem Logarithmus der Oberflächentemperatur und dem Logarithmus der 

Leuchtkraft eines Sterns im Hauptreihenstadium besteht laut Theorie näherungsweise ein linearer 

Zusammenhang: mit steigender Oberflächentemperatur nimmt die Leuchtkraft zu. Für die folgenden 

Berechnungen können Sie von einer bivariaten Normalverteilung für die beiden metrischen Variablen 

ausgehen. 

(a) Ermitteln Sie dien Pearson-Korrelationskoeffizienten zwischen den beiden Variablen und 

erstellen Sie einen entsprechenden Ergebnisbericht. Wie würden Sie das Resultat in Hinsicht 

auf die theoretische Vorhersage interpretieren? 

(b) Bei der Inspektion eines Streudiagramms für die 47 Sterne stellt ein Astrophysiker fest, dass 

das Diagramm vier Sterne enthält, die sehr hohe Leuchtkraft (> 5.5) bei sehr geringer 

Oberflächentemperatur (< 3.6) aufweisen. Da es sich bei diesen Sternen vermutlich nicht um 

Hauptreihensterne, sondern um sogenannte Rote Riesen handelt, empfiehlt der Astrophysiker 

die Berechnung der Korrelation unter Ausschluss dieser vier Sterne zu wiederholen. Zu 

welchem Ergebnis kommen Sie in diesem Fall und was schließen Sie daraus für den theoretisch 

postulierten Zusammenhang zwischen den Logarithmen von Oberflächentemperatur und 

Leuchtkraft? 
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Kapitel 4 

Parameterschätzung und Testen statistischer Hypothesen über Populationsmittelwerte 

Stefan E. Huber 

Bis hierher haben uns vorranging mit der grundlegenden Bedienung der Software SPSS (Kapitel 2) und 

der Beschreibung gegebener Datensätze bzw. Stichproben (Kapitel 3) befasst. In diesem Kapitel werden 

wir uns erstmals sogenannter inferenzstatistischer Fragestellungen annehmen. Das heißt, wir wollen auf 

der Basis einer (begrenzten) Stichprobe Aussagen über die Population treffen, aus der die Stichprobe 

gezogen wurde. 

Z.B. möchten wir aufgrund unserer Stichprobe abschätzen wie hoch die mittlere Ausprägung 

einer Variablen in der Population ist. Könnten wir eine Messung dieser Variable an jedem Fall der 

Population vornehmen, dann könnten wir schlichtweg den Mittelwert berechnen und hätten unsere 

Antwort. In der Realität ist es aber meistens nicht möglich eine gesamte Population zu vermessen. Man 

stelle sich beispielsweise vor, bei der Population handele es sich um alle erstsemestrigen Studierenden 

und bei dem interessierenden Merkmal um das Interesse am jeweiligen Studium. Letzteres soll mittels 

eines Fragebogens erfasst werden, d.h. die Skala, die aus den Items des Fragebogens generiert wird, soll 

das Merkmal „Interesse am Studium“ in einer Zahl abbilden. Bei der Ausprägung auf dieser Skala 

handelt es sich also um die Variable, mit der das interessierende Merkmal erfasst werden soll. Uns 

interessiert nun wie hoch das Interesse am jeweils eigenen Studium unter Studienanfänger:innen 

(Erstsemestrigen) im Mittel ist, d.h. wir interessieren uns für den Populationsmittelwert. Diesen können 

wir nun aus zwei Gründen nicht durch Messung aller Erstsemestrigen erfassen. Der erste Grund ist ein 

rein praktischer: selbst wenn wir uns auf ein einziges Erhebungsjahr beschränken würden, gibt es 

(weltweit) sehr viele Erstsemestrige, was die Erhebung praktisch unmöglich macht (prinzipiell, d.h. 

denkbar, ist sie natürlich möglich). Der zweite Grund ist allerdings ein prinzipieller: unsere 

Fragestellung war ja nicht zeitlich beschränkt. Das heißt, wir wollen das mittlere Studieninteresse nicht 

nur bei Erstsemestrigen eines bestimmten Jahrgangs wissen, sondern bei Erstsemestrigen überhaupt. 

Diese zeitliche Unbeschränktheit der Fragestellung macht die Erhebung der gesamten Population 
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prinzipiell unmöglich, da wir ja in einem bestimmten Zeitraum keine Erhebungen an vergangenen und 

zukünftigen Erstsemestrigen durchführen können. 

Allerdings erlaubt uns die Erhebung des Studieninteresses zu einem bestimmten Zeitpunkt an 

einer hinreichend großen Anzahl von Erstsemestrigen immer noch Aussagen über die mögliche 

Ausprägung des Populationsmittelwerts. Diese Aussagen sind dann allerdings aufgrund der Endlichkeit 

der Stichprobe schon rein statistisch mit Unsicherheiten behaftet. Dazu kommen natürlich noch andere 

Einschränkungen wie Kontexteffekte, kulturelle Unterschiede etc., die die Generalisierbarkeit der 

Aussagen über bloße statistische Unsicherheiten hinaus einschränken. Diese Limitationen klammern wir 

aber der Einfachheit halber für den weiteren Verlauf dieser Übungen zu statistischen Anwendungen erst 

einmal aus. In diesem Kapitel befassen wir uns also erst einmal nur mit jenen rein statistischen 

Auswirkungen auf Aussagen, die wir aufgrund einer endlichen Stichprobe über den Populations-

mittelwert treffen können. 

Dafür werden wir uns zwei Fälle genauer ansehen: (1) die Schätzung des Populations-

mittelwerts, (2) die Testung von Hypothesen über den Populationsmittelwert, jeweils auf der Basis einer 

endlichen Stichprobe. Für beide Fälle werden wir immer davon ausgehen, dass es sich bei unserer 

Stichprobe um eine einfache Zufallsstichprobe handelt. Das heißt, wir ziehen Personen oder im 

Allgemeinen Merkmalsträger:innen (wir werden noch sehen, dass es sich dabei nicht unbedingt um 

Personen handeln muss) zufällig aus der Population. Das bedeutet jede:r Merkmalsträger:in hat dieselbe 

Wahrscheinlichkeit aus der Population gezogen zu werden wie jede:r andere Merkmalsträger:in. Zudem 

sind die Ziehungen einzelner Merkmalsträger:innen unabhängig voneinander, d.h. die Ziehung einer 

beliebigen Person aus einer Population hängt nicht davon ab, welche anderen Personen bereits gezogen 

wurden oder noch gezogen werden sollen. 

Im Folgenden werden wir uns ansehen wie wir SPSS verwenden können, um die beiden 

inferenzstatistischen Fragestellungen (1) und (2) zu beantworten. Der Einfachheit halber werden wir 

dafür den Beispieldatensatz „Kap4daten.sav“ verwenden, den Sie in dem elektronischen 

Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument finden können, das 

Sie unter https://osf.io/9tcx3/ herunterladen können. 

https://osf.io/9tcx3/
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Der Datensatz enthält IQ-Werte von 240 fiktiven Studienanfänger:innen im Studiengang 

Psychologie. In einer zweiten Variablen (IQsub) sind IQ-Werte einer kleineren Menge an Studierenden 

aus der Gesamtmenge gegeben, mithilfe derer wir uns ein Bild davon machen können, wie sich der 

Stichprobenumfang auf unsere Ergebnisse auswirken kann. Die Fragestellungen, die wir mittels dieses 

Datensatzes mit SPSS beantworten möchten, lauten: 

(1) Wie hoch ist der mittlere IQ von Studienanfänger:innen im Studiengang Psychologie? 

(2) Unterscheidet sich der mittlere IQ von Studienanfänger:innen im Studiengang 

Psychologie vom mittleren IQ von 100 der Population aller jungen Erwachsenen? 

Für beide Fragestellungen nehmen wir an, dass unsere fiktive Stichprobe repräsentativ für die Population 

von Studienanfänger:innen im Studiengang Psychologie ist. 

In SPSS können beide Fragestellungen im Rahmen der Durchführung eines Einstichproben-t-

Tests beantwortet werden. Prinzipiell handelt es sich aber beim Einstichproben-t-Test um einen 

statistischen Test, der verwendet wird, um den Unterschied eines Populationsmittelwerts von einem 

vorgegebenen Wert zu testen, d.h. hier insbesondere um Fragestellung (2) zu beantworten. Auch wenn 

es sehr angenehm ist, beide Antworten in SPSS gleich auf einmal zu bekommen, ist es trotzdem wichtig 

zu verstehen, dass es sich bei den beiden Fragestellungen prinzipiell um konzeptuell verschiedene 

Fragestellungen handelt. Aus diesem didaktischen Grund werden sie im Folgenden auch getrennt 

voneinander behandelt. 

Zusätzlich zur Beantwortung der oben genannten Fragestellungen werden wir uns in diesem 

Kapitel auch noch ansehen, wie wir die Effektstärke für einen Einstichproben-t-Test mit SPSS ermitteln 

können und wie Ergebnisberichte für die durchgeführten Analysen gemäß APA-Format zu berichten 

sind. Schließlich werden wir uns noch ansehen wie eine Stichprobenplanung für einen Einstichproben-

t-Test mit der frei verfügbaren Software G*Power durchgeführt werden kann. 
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Punkt- und Intervallschätzung eines Populationsmittelwerts 

Aus der Theorie wissen wir (Bühner et al., 2025), dass es sich beim Stichprobenmittelwert um 

einen erwartungstreuen, effizienten und konsistenten Schätzer für den Populationsmittelwert handelt. 

Strenggenommen gilt dies zwar nur, wenn es sich bei der Variable, deren Mittelwert geschätzt werden 

soll, um eine identisch und unabhängig normalverteilte Zufallsvariable handelt, allerdings kann 

aufgrund des zentralen Grenzwerttheorems davon ausgegangen werden, dass sich für hinreichend große 

Stichproben, die Stichprobenkennwerteverteilung auch hinreichend gut durch eine Normalverteilung 

approximieren lässt und diese Eigenschaften der Schätzfunktion des Populationsmittelwerts in guter 

Näherung auch für anders verteilte Zufallsvariablen gültig bleiben. In der Psychologie hat sich dafür die 

Konvention eingebürgert, dass Stichproben zumindest einen Umfang von 30 aufweisen sollten (ob dies 

im Einzelfall auch genügt, um pauschal von einer hinreichend guten Näherung auszugehen, ist zu 

bezweifeln, siehe z.B. Wilcox, 2022; für diese Übungen werden wir allerdings aus rein pragmatischen 

Gründen erst einmal davon ausgehen). 

Das heißt, für eine Punktschätzung des Populationsmittelwerts wären wir mit der Ermittlung 

des Stichprobenmittelwerts bereits fertig. Wie im letzten Kapitel besprochen, könnten wir etwa über 

Analyze >> Descriptive Statistics >> Frequencies… unter „Statistics“ den Mittelwert (Engl.: Mean) 

anfordern und würden für unsere Stichprobe den Wert von 106.75 erhalten. In der Tat wäre das unsere 

Punktschätzung für den Populationsmittelwert auf Basis unserer Stichprobe. 

Allerdings wurde oben bereits erwähnt, dass diese Schätzung aufgrund der Endlichkeit der 

Stichprobe mit einer Unsicherheit verbunden ist. Aus der Theorie wissen wir (Bühner et al., 2025), dass 

sich auch diese statistische Unsicherheit quantifizieren lässt. Eine Möglichkeit ist die Berechnung des 

Standardfehlers 𝑆𝐸 = 𝑆𝐷/√𝑛 mit 𝑆𝐷 dem Schätzwert der Populationsstandardabweichung (wie ihn uns 

SPSS praktischer gleich ausgibt) und 𝑛 dem Stichprobenumfang. Der Standardfehler kann ebenfalls 

gleich unter Analyze >> Descriptive Statistics >> Frequencies… und dort unter Statistics angefordert 

werden und muss nicht selbst berechnet werden. In unserem Fall ergibt sich für den Standardfehler des 

Mittelwerts 𝑆𝐸 = 0.74. Lassen wir uns zusätzlich die Standardabweichung ausgeben, lässt sich leicht 

überprüfen, dass der Ausdruck 
𝑆𝐷

√𝑛
=

11.42

√240
= 0.74 tatsächlich dem Wert des Standardfehlers entspricht. 
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Je geringer der Standardfehler, desto präziser unsere Punktschätzung, d.h., desto zuversicht-

licher sind wir, uns mit unserer Punktschätzung auch in der Nähe des tatsächlichen Populations-

mittelwerts zu befinden. Dies wird auch bei der sogenannten Intervallschätzung noch einmal deutlich, 

für die der Standardfehler auch eine wesentliche Rolle spielt. 

Aus der Theorie wissen wir schließlich (Bühner et al., 2025), dass für die normalverteilte 

Schätzfunktion 𝑋̅ des Mittelwerts die folgende Teststatistik 

𝑇 =
𝑋̅ − 𝜇

√𝑆2/𝑛
 

einer zentralen t-Verteilung mit 𝜈 = 𝑛 − 1 Freiheitsgraden folgt (Student, 1908). Hier bezeichnet 𝑆2 die 

Schätzfunktion der Populationsvarianz, 𝑛 ist wiederum der Stichprobenumfang, 𝜇 bezeichnet den 

(unbekannten) Populationsmittelwert. 

Für eine gegebene Stichprobengröße können die Quantile 𝑡𝛼/2 und 𝑡1−𝛼/2 einer t-Verteilung 

berechnet werden (z.B. mit dem Online-Tool unter www.stattrek.com), so dass 

𝑃 (𝑡𝛼
2

≤ 𝑇 ≤ 𝑡
1−

𝛼
2

) = 1 − 𝛼. 

D.h. es können jene Grenzen des Bereichs unterhalb der t-Verteilung berechnet werden, 

außerhalb derer sich jeweils genau 𝛼/2 der Fläche unterhalb der t-Verteilung befinden. Bekanntlich ist 

die Wahrscheinlichkeit, mit der sich eine Zufallsvariable in einem bestimmten Bereich unterhalb ihrer 

Wahrscheinlichkeitsdichteverteilung realisiert, proportional zur Fläche dieses Bereichs. Die 

Wahrscheinlichkeit, dass sich die Größe 𝑇 also im Bereich 𝑡𝛼

2
≤ 𝑇 ≤ 𝑡1−

𝛼

2
 realisiert, ist also genau durch 

1 − 𝛼 gegeben. 

Einsetzen des Ausdrucks für 𝑇 oben führt auf 

𝑃 (𝑡𝛼
2

≤
𝑋̅ − 𝜇

√𝑆2/𝑛
≤ 𝑡

1−
𝛼
2

) = 1 − 𝛼. 

Die linke der beiden Ungleichungen im Argument der Wahrscheinlichkeitsfunktion lässt sich 

wie folgt nach 𝜇 auflösen: 

http://www.stattrek.com/
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𝑡𝛼
2

≤
𝑋̅ − 𝜇

√𝑆2

𝑛

    ⇒     𝑡𝛼
2

∙ √
𝑆2

𝑛
≤ 𝑋̅ − 𝜇    ⇒     𝜇 ≤ 𝑋̅ − 𝑡𝛼

2
∙ √

𝑆2

𝑛
    ⇒     𝜇 ≤ 𝑋̅ + 𝑡

1−
𝛼
2

∙ √
𝑆2

𝑛
, 

wobei hier im letzten Schritt die Symmetrie der zentralen t-Verteilung 𝑡𝛼

2
= −𝑡1−

𝛼

2
 verwendet wurde. 

Analog lässt sich die zweite der beiden Ungleichungen wie folgt nach 𝜇 auflösen: 

𝑡
1−

𝛼
2

≥
𝑋̅ − 𝜇

√𝑆2

𝑛

    ⇒     𝑡
1−

𝛼
2

∙ √
𝑆2

𝑛
≥ 𝑋̅ − 𝜇    ⇒     𝜇 ≥ 𝑋̅ − 𝑡

1−
𝛼
2

∙ √
𝑆2

𝑛
. 

Damit ergibt sich schließlich die aus der Theorie bekannte Gleichung (Bühner et al., 2025) 

𝑃 (𝑋̅ − 𝑡
1−

𝛼
2

∙ √
𝑆2

𝑛
≤ 𝜇 ≤ 𝑋̅ + 𝑡

1−
𝛼
2

∙ √
𝑆2

𝑛
) = 1 − 𝛼. 

Kann also 𝑋̅ als normalverteilte Zufallsvariable approximiert werden, so realisiert sich diese 

Zufallsvariable im (1 − 𝛼)-Anteil aller möglichen Realisationen in einem Bereich, so dass der 

unbekannte Populationsmittelwert von den Grenzen dieses Bereiches eingeschlossen wird, also 

innerhalb des folgendes Intervalls liegt: 

[𝑋̅ − 𝑡
1−

𝛼
2

∙ √
𝑆2

𝑛
, 𝑋̅ + 𝑡

1−
𝛼
2

∙ √
𝑆2

𝑛
] = [𝑈, 𝑂] 

mit 𝑈 und 𝑂 der unteren bzw. oberen Grenz des (zufälligen) Intervalls. Hier ist wichtig, noch einmal in 

Ruhe über die exakte Bedeutung dieses Intervalls zu reflektieren: Im Anteil (1-𝛼) aller möglichen 

Realisationen der Zufallszahl 𝑋̅ befindet sich 𝜇 tatsächlich irgendwo zwischen den beiden Grenzen 

dieses Intervalls. Lediglich im 𝛼-Anteil aller möglichen Realisationen von 𝑋̅ realisiert sich 𝑋̅ so weit 

entfernt vom Populationsmittelwert, dass das auf diese Weise gebildete Intervall den 

Populationsmittelwert nicht enthält. Wird daher ein kleiner Wert für 𝛼 gewählt, kann man sehr 

zuversichtlich sein (das „sehr“ lässt sich hier exakt spezifizieren: man kann mit (1 − 𝛼) ∗ 100% 

zuversichtlich sein), dass das konkrete (1 − 𝛼)-Konfidenzintervall (häufig abgekürzt als KI), das sich 
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durch Einsetzen der jeweiligen Schätzwerte für die jeweiligen Schätzfunktionen, d.h. Einsetzen des 

Stichprobenmittelwerts 𝑥̅ für 𝑋̅ und des Standardfehlers 𝑆𝐸 = √𝑠2/𝑛 für √𝑆2/𝑛, ergibt 

[𝑥̅ − 𝑡
1−

𝛼
2

∙ √
𝑠2

𝑛
, 𝑥̅ + 𝑡

1−
𝛼
2

∙ √
𝑠2

𝑛
] = [𝑥̅ − 𝑡

1−
𝛼
2

∙ 𝑆𝐸, 𝑥̅ + 𝑡
1−

𝛼
2

∙ 𝑆𝐸] = [𝑢, 𝑜] 

den Populationsmittelwert 𝜇 auch tatsächlich enthält. 

Für unseren konkreten Datensatz kann dieses Konfidenzintervall über Analyze >> Compare 

Mean and Proportions >> One-Sample T Test… angefordert werden. Unter Options kann der Anteil 

1 − 𝛼 in Prozent festgelegt werden, siehe Abbildung 4.1. Wählen wir z.B. 𝛼 = 0.05, geben wir dort 

95% ein, was ohnehin der Voreinstellung entspricht. Wir erhalten dann ein sog. 95%-Konfidenzintervall 

(typischerweise abgekürzt zu 95%-KI). 

 

Abbildung 4.1. Anfordern eines 95%-Konfidenzintervalls für den Mittelwert auf Basis unserer 

Stichprobe. 

Einfügen der entsprechenden Kommandos durch Klicken auf „Paste“ und Ausführen der 

Kommandozeilen in der Syntax (natürlich erst nachdem wir die Syntax hinreichend dokumentiert 

haben) erzeugt die in Abbildung 4.2. gezeigte Ausgabe. In der Tabelle unter der Überschrift „One-

Sample Statistics“ finden wir nochmals den Stichprobenumfang, die Punktschätzung des Mittelwerts (= 

der Stichprobenmittelwert), die Standardabweichung sowie den sich aus letzterer und dem 

Stichprobenumfang ergebenden Standardfehler des Mittelwerts. Eine separate Berechnung dieser 
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Größen, wie oben rein zur Illustration durchgeführt, ist also nicht notwendig, wir bekommen all diese 

Informationen und noch mehr ohnehin auf diese Weise. 

Das Konfidenzintervall für den Mittelwert können wir in der Tabelle „One-Sample Test“ ganz 

rechts unter der Überschrift „95% Confidence Interval of the Difference“ ablesen. Unter der 

Bezeichnung „Lower“ finden wir die untere Grenze, unter der Bezeichnung „Upper“ die obere Grenze. 

Das Ergebnis unserer Intervallschätzung für den Populationsmittelwert könnten wir auf Basis 

dieser Ergebnisse wie folgt berichten: „Auf Basis unserer Stichprobe sind die Werte in dem 95%-

Konfidenzintervall [105.29, 108.20] die plausiblen Werte für den Mittelwert des IQ in der Population.“ 

 

Abbildung 4.2. Ausgabe für einen Einstichproben-t-Test, die hier erstmal nur zur Ermittlung des 95%-

Konfidenzintervalls für den Mittelwert herangezogen wird. 
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Hypothesentest für eine ungerichtete statistische Hypothese über den Populationsmittelwert 

Die zweite Fragestellung, die wir mit Hilfe unseres Datensatzes beantworten wollten, lautete: 

Unterscheidet sich der mittlere IQ von Studienanfänger:innen im Studiengang Psychologie vom 

mittleren IQ von 100 der Population aller jungen Erwachsenen? 

Da wir hier lediglich nach einem Unterschied fragen, handelt es sich hierbei (wenn auch als 

Frage formuliert) um eine ungerichtete Hypothese. Wir hätten ja auch vermuten können, dass der IQ 

von Studienanfänger:innen im Studiengang Psychologie größer oder kleiner als jener der 

Allgemeinpopulation junger Erwachsener ist. Dann hätte es sich um gerichtete Hypothesen gehandelt. 

Wie wir diese mit SPSS testen können, werden wir uns auch gleich im Anschluss an die Beantwortung 

der gerichteten Fragestellung ansehen. 

Zurück zur vorliegenden, ungerichteten Hypothese, die sich wie folgt spezifizieren lässt: 

𝐻0: 𝜇 = 𝜇0 = 100, 𝐻1: 𝜇 ≠ 𝜇0 = 100, 

d.h. die Nullhypothese wäre „der Populationsmittelwert ist gleich demjenigen der Allgemeinpopulation 

von 100“ und die Alternativhypothese wäre „die beiden Populationsmittelwerte unterscheiden sich“. 

Hier haben wir bereits angenommen, dass die Stichprobenkennwerteverteilung des Mittelwerts durch 

eine Normalverteilung approximiert werden kann und daher die Schätzfunktion des Mittelwerts die 

nötigen Gütekriterien erfüllt, um den Populationsmittelwert 𝑥̅𝑝𝑜𝑝 zu schätzen. 

Wie oben bereits erläutert, wissen wir, dass die Teststatistik 

𝑇 =
𝑋̅ − 𝜇

√𝑆2/𝑛
 

einer zentralen t-Verteilung mit 𝜈 = 𝑛 − 1 Freiheitsgraden folgt (Student, 1908). Hier bezeichnet 𝑆2 die 

Schätzfunktion der Populationsvarianz, 𝑛 ist wiederum der Stichprobenumfang, 𝜇 bezeichnet den 

(unbekannten) Populationsmittelwert. 

Unter der Gültigkeit der Nullhypothese, d.h., wenn 𝜇 = 𝜇0, gilt dann entsprechend auch, dass 

𝑇 =
𝑋̅ − 𝜇0

√𝑆2/𝑛
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einer zentralen t-Verteilung mit 𝜈 = 𝑛 − 1 Freiheitsgraden folgt. Wenn dem so ist, und wir uns zudem 

vorstellen, sehr viele einfache Zufallsstichproben zu ziehen und jeweils die jeweilige Realisation dieser 

Teststatistik zu berechnen, so würde nur in 𝛼/2 aller Fälle eine Teststatistik kleiner als das 𝛼/2-Quantil 

der t-Verteilung resultieren. Genauso würde nur in 𝛼/2 aller Fälle eine Teststatistik größer als das (1 −

𝛼/2)-Quantil der t-Verteilung resultieren. 

Wenn wir nun einen sehr kleinen Wert für 𝛼, das sog. Signifikanzniveau (oder der Typ I Fehler 

oder Fehler 1. Art oder die Irrtumswahrscheinlichkeit), wählen würden, könnten wir schlichtweg die 

Teststatistik für unsere konkrete Stichprobe berechnen, und würde das einen Wert kleiner als das 𝛼/2-

Quantil der t-Verteilung (mit 𝜈 = 𝑛 − 1 Freiheitsgraden) oder größer als das (1 − 𝛼/2)-Quantil der t-

Verteilung (mit 𝜈 = 𝑛 − 1 Freiheitsgraden) ergeben, könnten wir schlussfolgern, dass die Realisierung 

eines so extremen Wertes nur sehr selten der Fall wäre, wenn die Nullhypothese zuträfe. Daraus könnten 

wir dann den Umkehrschluss ziehen, dass die Annahme der Gültigkeit der Nullhypothese unplausibel 

erscheint. Auf dieser Grundlage könnten wir schließlich die Nullhypothese mit Irrtumswahrschein-

lichkeit 𝛼 verwerfen. Der Begriff Irrtumswahrscheinlichkeit bezieht sich hierbei auf die Tatsache, dass 

sich entsprechend extreme Werte für die Teststatistik ja tatsächlich selten, aber eben doch unter 

Gültigkeit der Nullhypothese ergeben. In diesen seltenen Fällen würden wir also die Nullhypothese 

mittels des oben beschrieben Vorgehens ablehnen, obwohl sie zuträfe, d.h. wir würden uns in unserer 

Entscheidung irren. Das geht letztlich einfach darauf zurück, dass wir auf Basis einer endlichen 

Stichprobe keine sichere Entscheidung über Populationseigenschaften treffen können, es bleibt immer 

eine Unsicherheit. 

Alternativ, aber, was die Testentscheidung anbelangt, völlig äquivalent zu dem eben erläuterten 

Vorgehen, können wir einen sogenannten p-Wert berechnen. Der p-Wert ist die maximale Wahrschein-

lichkeit unter der Gültigkeit der Nullhypothese (und aller nötigen Annahmen für die t-Verteilung der 

Teststatistik, siehe oben bzw. auch die Erläuterungen unten zu Testannahmen) dafür, dass sich die 

Teststatistik in der beobachteten Realisation oder einer extremeren Realisation in Richtung der 

Alternativhypothese realisiert. Ist dieser p-Wert kleiner dem gewählten Signifikanzniveau 𝛼, dann liegt 

die Teststatistik auch im kritischen Bereich (d.h. hier: sie ist kleiner als das 𝛼/2-Quantil der t-Verteilung 
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oder größer als das (1 − 𝛼/2)-Quantil der t-Verteilung) und umgekehrt. Dies gilt auch für alle weiteren 

Hypothesentests, die wir im Rahmen dieser Übungen noch besprechen werden. 

Wie können wir nun einen solchen Hypothesentest für unseren Datensatz mit SPSS 

durchführen? Dazu wählen wir wieder Analyze >> Compare Mean and Proportions >> One-Sample T 

Test… und im sich öffnenden Fenster geben wir nun unter „Test Value“ die Zahl 100 ein, siehe 

Abbildung 4.3. Das bedeutet, wir wollen einen ungerichteten Einstichproben t-Test durchführen, der die 

Gleichheit des auf Basis unserer Stichprobe geschätzten Populationsmittelwerts mit dem Wert 100 prüft. 

Alle anderen Einstellungen können wir belassen wie sie sind und dann auf „Paste“ klicken um wieder 

die entsprechenden Kommandozeilen in die Syntax einzufügen. Ausführen dieser Zeilen ergibt die 

Ausgabe, die wir in Abbildung 4.4 bewundern können. In der Tabelle mit der Überschrift „One-Sample 

Test“ finden wir unseren p-Wert unter „Two-Sided p“, der kleiner als 0.001 ausfällt, daher wird in der 

Ausgabe (ganz konform mit den APA-Richtlinien) lediglich „< .001“ ausgegeben. Möchten wir den 

Wert aber exakt wissen, dann können wir in der Ausgabe die Tabelle doppelt anklicken und dort 

nochmals auf den entsprechenden Wert doppelt klicken, um den exakten Wert einzusehen. 

 

Abbildung 4.3. Anforderung eines ungerichteten Einstichproben t-Tests um die Gleichheit des 

Populationsmittelwerts mit dem Wert 100 zu prüfen. 
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Abbildung 4.4. Ausgabe für den soeben angeforderten Einstichproben t-Test. 

An der Ausgabe sehen wir auch, dass sich unser 95%-Konfidenzintervall geändert hat. Anstelle 

des Intervalls [105.29, 108.20] wird uns das Intervall [5.29, 8.20] angegeben. Das ist aber nur ein 

scheinbarer Unterschied, da sich dieses Intervall auf die Differenz zwischen dem geschätzten 

Populationsmittelwert und dem Wert für den Mittelwert bezieht gegen den wir schätzen. Dasselbe gilt 

für die Punktschätzung des Mittelwerts. In der Tabelle „One-Sample Test“ wird uns der Wert 6.75 für 

die mittlere Differenz angezeigt anstelle des Werts 106.75 in Abbildung 4.2. Dort war aber der Wert 

„gegen den wir getestet haben“ die Voreinstellung von null (vgl. Abbildung 4.1 mit Abbildung 4.3). Wir 

können also prinzipiell alles auf einmal, d.h. Punktschätzung, Intervallschätzung und einen 

Hypothesentest für einen bestimmten Testwert in SPSS ausführen. Wir dürfen dabei dann nur nicht 

vergessen, den Wert, auf dessen Gleichheit wir testen, wieder zu den Grenzen für das Konfidenz-

intervall, das wir berechnen, bzw. für die Punktschätzung zur mittleren Differenz, die wir erhalten, zu 

addieren, wenn wir auch an Punkt- und Intervallschätzungen für den Populationsmittelwert interessiert 

sind. Bei der Punktschätzung besteht allerdings geringere Gefahr, da diese ohnehin auch zusätzlich in 

der Tabelle „One-Sample Statistics“ abzulesen ist. 
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Schließlich sehen wir in der Ausgabe auch einen Wert für „One-Sided p“, den wir heranziehen 

müssten, wenn wir ursprünglich eine gerichtete Hypothese über den Populationsmittelwert gehabt 

hätten. Diesen p-Wert könnten wir allerdings auch sehr leicht selbst aus dem p-Wert für ungerichtete 

Hypothesen (in der Tabelle unter „Two-Sided p“) ermitteln, da es sich dabei schlichtweg um die Hälfte 

des Werts für Letzteren handelt. In dieser Ausgabe kann das allerdings wiederum nur durch Doppelklick 

auf die Tabelle und anschließende Inspektion der exakten Werte sichtbar gemacht werden. 

Effektstärke für den Einstichproben t-Test 

In der Theorie haben wir Effektstärken als nützliche, einheitsunabhängige Maße kennengelernt, die als 

die Größe eines Unterschieds oder die Stärke eines Zusammenhangs interpretiert werden können 

(Bühner et al., 2025). Im Falle eines Einstichproben t-Tests können in SPSS zwei solcher Maße unter 

Analyze >> Compare Mean and Proportions >> One-Sample T Test… angefordert werden, indem 

„Estimate effect sizes“ ausgewählt wird (als Voreinstellung ist dies bereits grundsätzlich ausgewählt), 

siehe Abbildung 4.1 oder Abbildung 4.3. 

Die entsprechende Ausgabe dieser beiden Effektstärken findet sich dann in der Tabelle „One-

Sample Effect Sizes“ und bezieht sich auf die Größe des Unterschieds zwischen dem geschätzten 

Populationsmittelwert und dem Wert gegen den mittels des Einstichproben t-Tests getestet wurde. Die 

Effektstärken selbst sind in dieser Tabelle in der Spalte „Point Estimate“ zu finden, da es sich dabei 

wiederum um Punktschätzungen einer prinzipiell unbekannten Effektstärke in der Population handelt. 

Die Effektstärke Cohens 𝑑 entspricht dem Verhältnis der Differenz zwischen Schätzwert für den 

Populationsmittelwert und dem Testwert und der geschätzten Standardabweichung 𝑆𝐷, d.h. 

𝑑 =
𝑥̅ − 𝜇0

𝑆𝐷
. 

In unserem konkreten Fall lässt sich damit die Ausgabe in Abbildung 4.4 sehr leicht 

nachvollziehen: 

𝑑 =
𝑥̅ − 𝜇0

𝑆𝐷
=

106.75 − 100

11.417
=

6.75

11.417
= 0.591. 
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Wie an der SPSS Ausgabe in Abbildung 4.4 abzulesen handelt es sich bei der zweiten 

Effektstärke um eine Effektstärke, bei der im Nenner für Cohens 𝑑 zusätzlich ein Korrekturfaktor 

verwendet wird. Häufig sind die sich ergebenden Effektstärken aber, wie auch in unserem Beispiel, sehr 

ähnlich. Wir werden im Rahmen dieser Übungen grundsätzlich immer Cohens 𝑑 verwenden. Auch für 

beide Effektstärken erhalten wir jeweils ein Konfidenzintervall. 

Für Cohens 𝑑 gibt es Heuristiken nach Cohen (1988), mit deren Hilfe eine einfache, schnelle 

Einschätzung der Größe der Effektstärke durchgeführt werden kann. Gemäß Cohen (1988) wird Cohens 

𝑑 im Bereich 0.2 bis 0.5 als klein, im Bereich 0.5 bis 0.8 als mittel, und für Werte größer als 0.8 als groß 

bezeichnet. Bei Werten unterhalb von 0.2 spricht man manchmal auch von vernachlässigbarer 

Effektstärke. Bei der Effektstärke ist schließlich meist nur der Betrag interessant, da sich die 

Abweichung des geschätzten Populationsmittelwerts vom Testwert ohnehin an der mittleren Differenz 

bzw. am Wert des geschätzten Populationsmittelwerts zeigt. 

Ergebnisbericht 

Die Ergebnisse, die bei der Schätzung des Populationsmittelwerts bzw. des Tests einer statistischen 

Hypothese über den Populationsmittelwert, erhalten werden, können grundsätzlich wie folgt berichtet 

bzw. interpretiert werden. 

Im Falle des vorliegenden Beispiels würde ein Ergebnisbericht etwa wie folgt aussehen: „Im 

Mittel ist der IQ der getesteten Studienanfänger:innen um 6.75 IQ-Punkte höher als der Vergleichswert 

von 100 (n = 240, M = 106.75, 95%-KI [105.29, 108.20], SD = 11.42). Der mittlere IQ unterscheidet 

sich (mit 𝛼 = .005) signifikant vom Vergleichswert, t(239) = 9.15, p < .001, Cohens d = 0.59, 95%-KI 

[0.45, 0.73]. Gemäß Cohens Heuristik (1988) handelt es sich um einen mittleren Effekt.“ 

Sehen wir uns die einzelnen Bestandteile dieses Ergebnisberichts noch einmal im Detail an. Im 

ersten Satz werden schlichtweg deskriptive Statistiken sowie Ergebnisse der Punkt- und 

Intervallschätzung berichtet. Der zweite Satz bezieht sich dann auf den durchgeführten Hypothesentest. 

Es wird mitgeteilt, dass sich der mittlere IQ signifikant vom Vergleichswert unterscheidet, d.h., der p-

Wert ist kleiner als das gewählte Signifikanzniveau 𝛼. Zudem werden die ermittelte Teststatistik (der t-

Wert), die Anzahl der Freiheitsgrade, der p-Wert und die Effektstärke inkl. Konfidenzintervall berichtet. 
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Die Effektstärke wird schließlich mittels der Heuristik nach Cohen (1988) interpretiert. Lateinische 

Buchstaben, die statistische Größen kennzeichnen sind gemäß APA-Richtlinien kursiv gesetzt, 

Dezimalzahlen werden auf zwei Nachkommastellen gerundet, mit Ausnahme des p-Werts, der auf drei 

Nachkommastellen genau angegeben wird; und p-Werte kleiner 0.001 werden mit „< .001“ 

gekennzeichnet, p-Werte größer als 0.999 mit „> .999“, siehe auch die entsprechenden Erläuterungen in 

Kapitel 3. 

Voraussetzungen für den Einstichproben t-Test und die Ermittlung von Konfidenzintervallen auf 

Grundlage der t-Verteilung 

Für die Gültigkeit der eben beschriebenen Verfahren zur Intervallschätzung bzw. zur Testung der 

entsprechenden statistischen Hypothesen müssen einige Voraussetzungen gelten, die teilweise immer 

wieder erwähnt wurden und teilweise impliziert waren, die aber wichtig genug sind, um noch einmal 

explizit angeführt zu werden. Diese Voraussetzungen sind: 

• Die Varianz der Population, aus der die Stichprobe gezogen wurde, ist nicht bekannt und muss 

mittels der Stichprobendaten geschätzt werden. Ist diese Varianz bekannt, kann stattdessen ein 

z-Test zur Hypothesentestung bzw. die Standardnormalverteilung zur Konstruktion von 

Konfidenzintervallen verwendet werden (siehe z.B. Bühner & Ziegler, 2017, S. 267-268). 

• Die Messwerte sind mindestens intervallskaliert. Nur dann ist die Bildung eines Mittelwerts und 

sein numerischer Vergleich mit einem bestimmten Vergleichswert durch eine Differenz auch 

sinnvoll. 

• Die abhängige Variable ist normalverteilt oder es liegt eine hinreichend große Stichprobe vor, 

dass von einer guten Näherung der Stichprobenkennwerteverteilung des Mittelwerts durch eine 

Normalverteilung aufgrund des zentralen Grenzwerttheorems ausgegangen werden kann. 

Sind diese Voraussetzungen nicht erfüllt, dann sind die Argumente, die oben verwendet wurden, um die 

Testentscheidungen plausibel zu machen, nicht mehr gültig. Liegt beispielsweise keine 

(näherungsweise) Normalverteilung der Stichprobenkennwerteverteilung des Mittelwerts vor, dann ist 

die Verteilung der Teststatistik 𝑇, die oben betrachtet wurde, im Allgemeinen nicht bekannt, die 

kritischen Bereiche können nicht ermittelt werden, und es ist nicht klar, wie p-Werte auf der Grundlage 
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fälschlich angenommener t-Verteilungen zu interpretieren sind. In diesen Fällen kann auf Verfahren 

zurückgegriffen werden, für die diese Voraussetzung(en) nicht gelten müssen, um belastbare 

Entscheidungsgrundlagen zu liefern. 

Eine Möglichkeit bietet hierzu das sog. Bootstrap-Verfahren, das hier zwar nicht im Detail 

besprochen wird, aber auf dessen Durchführbarkeit mit SPSS wenigstens hingewiesen werden soll. 

Entsprechende 95%-Bootstrap-Konfidenzintervalle können unter Analyze >> Compare Mean and 

Proportions >> One-Sample T Test… und dort im Untermenü „Bootstrap…“ durch Auswählen der 

Option „Perform bootstrapping“ angefordert werden. Für weitere Details wird an dieser Stelle aber auf 

spezialisierte Literatur bzw. Lernmaterialien verwiesen (siehe z.B. Bühner & Ziegler, 2017; Field, 2024; 

Wilcox, 2022). 

Teststärke und Stichprobenplanung 

Die Irrtumswahrscheinlichkeit bzw. der Fehler 1. Art wurde oben bereits kurz erläutert. Zur 

Wiederholung: Es handelte sich dabei um die Häufigkeit bei wiederholter Ziehung einfacher 

Zufallsstichproben unter Geltung der Nullhypothese die Nullhypothese mit dem Signifikanzniveau 𝛼 zu 

verwerfen, d.h. die Nullhypothese fälschlicherweise zu verwerfen. Der sozusagen umgekehrte Irrtum, 

nämlich die Nullhypothese nicht zu verwerfen, obwohl die Alternativhypothese zutrifft (d.h. im hier 

betrachteten Fall, dass auch wirklich ein Unterschied zwischen dem Populationsmittelwert und einem 

gegebenen Testwert besteht), wird als Fehler 2. Art (oder 𝛽-Fehler) bezeichnet. In diesem Kapitel 

bezieht er sich auf die Frage: Wie oft verwerfen wir die Nullhypothese nicht mit einem Einstichproben 

t-Test, obwohl sie nicht gilt? Die Komplementärhäufigkeit bzw. -wahrscheinlichkeit, mit der bei 

wiederholter Ziehung einer einfachen Zufallsstichprobe die Nullhypothese verworfen wird, wenn die 

Alternativhypothese zutrifft, steht in direktem Zusammenhang zum 𝛽-Fehler und wird als Teststärke 

(Engl.: power) bezeichnet: Ist die Wahrscheinlichkeit für einen Fehler 2. Art gleich 𝛽, so ist die 

Teststärke gleich 1 − 𝛽 und umgekehrt. 

Die Teststärke eines Verfahrens hängt dabei von drei Größen ab: der Effektstärke, dem 

Signifikanzniveau 𝛼 und dem Stichprobenumfang 𝑛. Zur Ermittlung der Teststärke muss also vorab 

bekannt sein, wie groß die Effektstärke eines bestimmten Mittelwertsunterschieds ist, um dann für ein 
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gegebenes Signifikanzniveau und einen gegebenen Stichprobenumfang berechnen zu können, wie 

häufig bei wiederholter Ziehung einer einfachen Zufallsstichprobe mit einem p-Wert kleiner 𝛼 zu 

rechnen ist. Umgekehrt kann dieser Zusammenhang zwischen den vier Größen (Teststärke, Effektstärke, 

Signifikanzniveau, Stichprobenumfang) aber genutzt werden, um bei einer fundierten Vermutung für 

eine Mindesteffektstärke, den Stichprobenumfang so planen zu können, dass bei einer geringen 

Fehlerwahrscheinlichkeit für einen Fehler 1. Art gleichzeitig auch eine hohe Wahrscheinlichkeit für die 

Verwerfung der Nullhypothese (d.h. auch eine geringe Wahrscheinlichkeit für einen Fehler 2. Art) 

besteht. 

Wenn zum Beispiel die begründete Vermutung besteht, dass sich ein Populationsmittelwert 

mindestens um eine Effektstärke von Cohens d = 0.2 von einem bestimmten Testwert unterscheiden 

sollte und die Fehlerwahrscheinlichkeit 1. Art mit einem 𝛼 von 0.005 klein gehalten werden soll (man 

möchte die Nullhypothese also nicht fälschlicherweise verwerfen), dann kann 𝛽 so berechnet werden, 

dass in beispielsweise 95% aller Einstichproben t-Tests für die jeweilige einfache Zufallsstichprobe ein 

𝑝 < 𝛼 resultiert, sofern tatsächlich Cohens d = 0.2 gilt. 

Eine Stichprobenplanung dieser Art kann beispielsweise mit dem unter 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-

arbeitspsychologie/gpower frei verfügbaren Programm G*Power durchgeführt werden. Nach dem 

Herunterladen und Öffnen der aktuellsten Version kann unter „Test family“ die Option „t tests“ 

ausgewählt werden. Unter „Statistical test“ ist dann für das vorliegende Beispiel „Means: Difference 

from constant (one sample case)“ auszuwählen. Unter „Type of power analysis“ kann die Voreinstellung 

„A priori: Compute required sample size – given 𝛼, power, and effect size“ so belassen werden. Nun 

sind die „Input Parameters“ zu wählen. Wir haben eine ungerichtete Hypothese („ein 

Populationsmittelwert unterscheidet sich von einem bestimmten Testwert“), d.h. wir wählen unter 

„Tail(s)“ die Option „Two“, da sich bei einer ungerichteten Hypothese bekanntlich der kritische Bereich 

unter der t-Verteilung in zwei Bereiche (einer für positive, einer für negative Werte der Teststatistik) 

gliedert. Diese beiden Bereiche unterhalb der t-Verteilung werden als Flanken (Engl.: Tails) bezeichnet. 

Ferner möchten wir mindestens eine Effektstärke von 0.2 (gemessen in Einheiten von Cohens d) mit 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
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hoher Wahrscheinlichkeit detektieren (d.h. ein signifikantes Ergebnis erhalten, d.h. 𝑝 < 𝛼), d.h. wir 

geben im Feld „Effect size d“ die Zahl 0.2 ein. Wir möchten allerdings die Nullhypothese nicht bzw. 

nur mit geringer Wahrscheinlichkeit verwerfen, wenn sie zutrifft, daher geben wir im Feld „𝛼 err prob“ 

den Wert 0.005 ein. Schließlich möchten wir – wie oben bereits gesagt – den vermuteten Effekt mit 

hoher Wahrscheinlichkeit detektieren, daher geben wir im Feld „Power (1-𝛽) err prob“ (das ist also die 

Teststärke, die wir gerne hätten) den Wert 0.95 ein (der netterweise schon voreingestellt ist). Diese 

Auswahlen und Eingaben sind in Abbildung 4.5 illustriert. 

Durch einen Klick auf die Schaltfläche „Calculate“ wird die Berechnung des benötigten 

Stichprobenumfangs durchgeführt. Neben dem unserem Signifikanzniveau entsprechenden kritischen t-

Wert und den Freiheitsgraden der entsprechenden t-Verteilung erhalten wir auch den uns hauptsächlich 

interessierenden Stichprobenumfang von 𝑛 = 500. Wenn wir also einen so kleinen Mittelwerts-

unterschied verlässlich (beide Fehlerarten betreffend) detektieren wollen, müssen wir eine recht 

umfangreiche Stichprobe erheben. Zusätzlich erhalten wir in der Ausgabe noch einen „Noncentrality 

parameter 𝛿“, der uns im Rahmen dieser Übungen nicht interessieren muss, und die eigentliche 

Teststärke für die gegebene Effektstärke, das gegebene Signifikanzniveau und die erhaltene 

Stichprobengröße. Der Grund dafür, dass die eigentliche Teststärke nicht genau der von uns geforderten 

entspricht, besteht schlichtweg darin, dass der Stichprobenumfang nur natürliche Zahlen annehmen kann 

und daher bei fixierter Effektstärke und fixiertem Signifikanzniveau eine kleine Abweichung von der 

geforderten Teststärke in Kauf genommen werden muss, damit sich für den Stichprobenumfang genau 

eine ganze Anzahl von Fällen ausgeht. Die erhaltene Ausgabe für die soeben durchgeführte 

Stichprobenplanung ist in Abbildung 4.6 gezeigt. 
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Abbildung 4.5. Eingaben für eine Stichprobenplanung für einen Einstichproben t-Test mit dem 

Programm G*Power. 
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Abbildung 4.6. Ausgabe für die soeben durchgeführte Stichprobenplanung. 
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Übungsaufgaben 

Beispiel 4.1 

Was gehört zur Definition einer einfachen Zufallsstichprobe? 

(a) Alle Merkmalsträger:innen einer Population haben dieselbe Wahrscheinlichkeit in die 

Stichprobe gezogen zu werden. 

(b) Die einzelnen Ziehungen müssen unabhängig voneinander sein 

(c) Merkmalsträger:innen müssen Personen sein. 

(d) Der Stichprobenumfang muss größer 30 sein. 

Beispiel 4.2 

Welche Aussage(n) zum p-Wert trifft(treffen) zu? 

(a) Der p-Wert ist die Wahrscheinlichkeit, dass die Nullhypothese wahr ist. 

(b) Aus dem p-Wert kann man die Wahrscheinlichkeit ableiten, dass die Alternativhypothese wahr 

ist. 

(c) Der p-Wert ist die Wahrscheinlichkeit dafür sich bei der Verwerfung der Nullhypothese zu irren. 

(d) Würde man das Experiment sehr oft wiederholen so würde man in (1 − 𝑝) ∙ 100% aller Fälle 

ein signifikantes Ergebnis erhalten. 

Beispiel 4.3 

Welche der folgenden Aussagen ist/sind richtig/falsch? 

Nr. Aussage R/F 

1) Es kann sein, dass der p-Wert kleiner als 𝛼 ist, aber die Teststatistik 𝑇 nicht im 

Ablehnungsbereich der Nullhypothese liegt. 

 

2) Für eine ungerichtete Hypothese ist der p-Wert die Wahrscheinlichkeit unter 

Annahme der Gültigkeit der Nullhypothese dafür, dass sich die Teststatistik in der 

beobachteten Realisation oder einer extremeren Realisation in Richtung der 

Alternativhypothese realisiert. 

 

3) Ist der p-Wert klein, dann liegt der wahre Populationsmittelwert weit weg vom 

Testwert. 

 

4) Ist der p-Wert klein, dann hat man einen Effekt mit großer Effektstärke detektiert.  
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Beispiel 4.4 

Welche der folgenden Aussagen ist/sind richtig/falsch? 

Nr. Aussage R/F 

1) Ein p-Wert größer als das gewählte Signifikanzniveau bedeutet, dass es keinen 

Unterschied zwischen dem Populationsmittelwert und dem Testwert gibt. 

 

2) Ein p-Wert größer als das gewählte Signifikanzniveau bedeutet, dass die 

Nullhypothese stimmt. 

 

3) Ein p-Wert größer als das gewählte Signifikanzniveau bedeutet, dass die 

Nullhypothese eher stimmt als die Alternativhypothese. 

 

4) Ein p-Wert kleiner als das gewählte Signifikanzniveau bedeutet, dass die 

Alternativhypothese zutrifft. 

 

Beispiel 4.5 

Welche Aussage(n) trifft(treffen) zu? 

(a) Um eine Stichprobenplanung in G*Power durchzuführen muss man wissen, wie viele Personen 

man insgesamt in einer Studie testen wird. 

(b) Die Teststärke (power) hängt von der Effektstärke, dem Signifikanzniveau und dem 

Stichprobenumfang ab. 

(c) Bei Cohens d handelt es sich um ein einheitsunabhängiges Maß für die Teststärke (power). 

(d) Ab einem Cohens d > 2 spricht man gemäß Cohens Heuristik (1988) von einem großen Effekt. 

Beispiel 4.6 

Was gehört zu den Voraussetzungen für einen Einstichproben t-Test? 

(a) Die Varianz der Population ist bekannt. 

(b) Die abhängige Variable ist normalverteilt oder es liegt eine hinreichend große Stichprobe vor. 

(c) Die abhängige Variable muss mindestens ordinalskaliert sein. 

(d) Die Varianz der Population ist nicht bekannt. 
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Beispiel 4.7 

In Österreich beträgt das Durchschnittsalter von Studierenden 27.1 Jahre (jedenfalls gemäß 

https://www.studium.at/oesterreichische-studenten-sind-im-schnitt-aelter-und-arbeiten-haeufiger). In 

der Datei „Kap3daten.sav“ finden Sie das Alter von 51 (fiktiven) Studierenden zu einem Zeitpunkt, an 

dem sie am Kurs „Anwendung statistischer Verfahren am Computer“ teilgenommen hatten. Verwenden 

Sie einen Einstichproben t-Test, um zu einer Entscheidung zu kommen, ob sich das Alter der 

Kursteilnehmer:innen vom oben angegeben Durchschnittsalter von Studierenden unterscheidet. 

Verwenden Sie ein Signifikanzniveau von 0.5%. Berichten Sie Ihre Resultate gemäß APA-Richtlinien 

und geben Sie auch eine Intervallschätzung für den Populationsmittelwert der Kursteilnehmer:innen an. 

Sind die Voraussetzungen für einen Einstichproben t-Test erfüllt? 

Beispiel 4.8 

Ein Medikament werde als die Verkehrstüchtigkeit einschränkend bezeichnet, sobald es die 

Reaktionszeit im Mittel um mehr als 50 ms verringere. 

Um die Wirkung eines neuen Medikaments auf die Verkehrstüchtigkeit zu testen, lässt daher 

ein (fiktives) Pharmaunternehmen die Wirkung des Medikaments auf die Reaktionszeitverzögerung 

(RZV) bei 42 Versuchspersonen prüfen. In der Datendatei „Kap4UE8.sav“, die Sie in dem 

elektronischen Ergänzungsmaterial finden, das Sie unter https://osf.io/9tcx3/ herunterladen können, 

finden Sie den dazugehörigen Datensatz. Verwenden Sie ein angemessenes statistisches Verfahren, um 

zu testen, ob die Reaktionszeitverzögerung in der Population durch Einnahme des Medikaments mehr 

als 50 ms im Mittel beträgt. Wählen Sie dafür ein Signifikanzniveau von 0.05. Berichten Sie Ihre 

Ergebnisse gemäß APA-Richtlinien. 

Beispiel 4.9 

Eine Forscherin zweifelt an der Sinnhaftigkeit der Überprüfung des Medikaments aus dem 

vorhergehenden Beispiel durch das Pharmaunternehmen. Ihre Argumentation lautet wie folgt. 

Aufgrund der Bedeutung der Überprüfung (Verkehrstüchtigkeit) sollten schon sehr kleine 

Änderungen über den Schwellenwert von 50 ms hinaus zu einer entsprechenden Kennzeichnung des 

Medikaments führen. Die Forscherin setzt dafür ein Cohens d = 0.1 als Limit an und fordert, dass eine 

https://www.studium.at/oesterreichische-studenten-sind-im-schnitt-aelter-und-arbeiten-haeufiger
https://osf.io/9tcx3/
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ernstzunehmende Untersuchung einen solchen Unterschied mit hoher Teststärke von mindestens 95% 

detektieren können sollte. Sie argumentiert weiter, dass das Signifikanzniveau dafür durchaus auf 𝛼 = 

0.1 erhöht werden könne, da ein Fehler 1. Art in diesem Fall das weitaus geringere Übel darstelle. 

(a) Verwenden Sie G*Power, um für die angegebenen Werte den nötigen Stichprobenumfang 

einer entsprechenden Untersuchung zu ermitteln. 

(b) Verwenden Sie G*Power, um zu ermitteln, welche Teststärke die Untersuchung des 

vorhergehenden Beispiels aufwies, um einen Effekt der Stärke Cohens d = 0.1 zu 

detektieren. Hinweis: Sehen Sie sich dafür die Option „Post hoc: Compute achieved 

power…“ unter „Type of power analysis“ an. 

Beispiel 4.10 

Die historische Entwicklung der Statistik hat bekanntlich viel mit der Bierbrauerei zu tun. So arbeitete 

beispielsweise William Gosset, der den sog. Studentschen t-Test entwickelt hat und hinter dem 

Pseudonym Student in der entsprechenden Arbeit aus dem Jahr 1908 steckt, in der Guinness Brauerei 

in Dublin. Noch heute kann man dort eine Plakette bewundern, die ihm zu Ehren dort angebracht wurde, 

siehe z.B. https://en.wikipedia.org/wiki/William_Sealy_Gosset. 

Seine Arbeit (vermutlich in der Qualitätssicherung) in der Brauerei stelle ich mir gerne wie folgt 

vor: Ein Bauer bringt einige Proben der aktuellen Hopfenernte vorbei, weil er neuer Hauptlieferant der 

ehrwürdigen Brauerei (und entsprechend gut bezahlt) werden möchte. William Gosset unterzieht die 

Proben einigen Tests, aus denen schließlich für jede Probe ein bestimmter Qualitätskennwert resultiert, 

z.B. diese Liste an Zahlen: 53, 77, 44, 62, 57, 48, 75, 71, 65, 65. Aus langjähriger Erfahrung weiß Gosset, 

dass es sich um qualitativ hochwertigen Hopfen handelt, wenn dieser im Mittel einen Qualitätskennwert 

von mindestens 50 übersteigt. 

Verwenden Sie einen geeigneten statistischen Test, um zu testen, ob die Ernte des Bauern 

diesem Qualitätsanspruch potentiell gerecht werden kann. Sie können für dieses Beispiel davon 

ausgehen, dass die Qualitätskennwerte durch eine identisch und unabhängig normalverteilte 

Zufallsvariable approximiert werden können. Erstellen Sie einen Ergebnisbericht gemäß APA-

Richtlinien. 

https://en.wikipedia.org/wiki/William_Sealy_Gosset
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Beispiel 4.11 

Wie viele Personen muss eine Stichprobe umfassen, damit ein Unterschied eines Populationsmittelwerts 

der Stärke Cohens d = 0.25 von einem gegeben, konstanten Wert von 100 für ein Signifikanzniveau 𝛼 

= .005 mit einer Teststärke (= power) von 80% detektiert werden kann? Fügen Sie für Ihre Antwort auch 

einen Screenshot Ihrer Berechnung des Stichprobenumfangs mit G*Power ein. 

Beispiel 4.12 

Tun Sie sich für diese Übungsaufgabe mit einem:einer Kolleg:in zusammen. Erstellen Sie jeweils 

unabhängig voneinander einen Ergebnisbericht für Beispiel 4.7. Überprüfen Sie danach gegenseitig Ihre 

Ergebnisberichte mit der am Ende dieses Dokuments bereitgestellten Lösung. Markieren und 

korrigieren Sie etwaige Fehler und seien Sie dabei ruhig möglichst streng. Diskutieren Sie anschließend 

Ihre gegenseitigen Korrekturen und klären Sie gemeinsam Fragen, die sich dabei ergeben. 

Beispiel 4.13 

Tun Sie sich für diese Übungsaufgabe mit einem:einer Kolleg:in zusammen. Erstellen Sie jeweils 

unabhängig voneinander einen Ergebnisbericht für Beispiel 4.8. Überprüfen Sie danach jeweils selbst 

die Korrektheit Ihres Ergebnisberichts mit der am Ende dieses Dokuments bereitgestellten Lösung. 

Fügen Sie anschließend in Ihren Ergebnisbericht 5 Fehler ein, ohne sie Ihrem:Ihrer Kolleg:in mitzuteilen 

(und es dürfen durchaus Fehler sein, die nur schwer zu entdecken sind). Tauschen Sie anschließend Ihre 

fehlerhaften Ergebnisberichte aus. Versuchen Sie nun jeweils die fünf Fehler zu identifizieren und zu 

korrigieren, indem Sie ausschließlich die Angabe von Beispiel 4.8, den entsprechenden Datensatz und 

SPSS verwenden, d.h. insbesondere, ohne dabei die Musterlösung zu verwenden. Für die korrekte 

Identifikation eines Fehlers gibt es einen Punkt, für die korrekte Korrektur eines Fehlers einen weiteren 

Punkt. D.h. Sie können jeweils 10 Punkte erreichen. Wer mehr Punkte erreicht gewinnt! Bei einem 

Unentschieden spielen Sie einfach noch eine Runde. 

Beispiel 4.14 

Reflektieren Sie schriftlich: Welche Voraussetzungen müssen für einen Einstichproben-t-Test erfüllt 

sein? Wie können Sie überprüfen, ob diese Voraussetzungen erfüllt sind? Was sind die Konsequenzen, 

wenn diese Voraussetzungen nicht erfüllt sind? Welche Alternativen haben Sie, falls die 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

132 

Voraussetzungen nicht erfüllt sind? Machen Sie vor allem zur Beantwortung der letzten Frage Gebrauch 

von entsprechender Literatur. Sie können auch von generativer Künstlicher Intelligenz Gebrauch 

machen, aber überprüfen Sie die erhaltenen Antworten jedenfalls mit einschlägiger Literatur. 
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Kapitel 5 

Schätzung und Testung von Mittelwertsunterschieden zwischen zwei Gruppen 

Stefan E. Huber 

Im vorhergehenden Kapitel haben wir sehr viele grundlegende theoretische Konzepte wiederholt. Dies 

haben wir nicht grundlos getan. In der Tat haben wir mit der Wiederholung dieser Grundkonzepte bereits 

alles vorbereitet, was wir in diesem Kapitel brauchen werden, um Mittelwertsunterschiede zwischen 

zwei Gruppen schätzen und gegen einen vorgegebenen Testwert prüfen zu können. Wesentliche Aspekte 

dieser Grundkonzepte werden wir auch in den kommenden Kapiteln immer wieder brauchen können. 

D.h. auch, dass wir ab jetzt den Durchführungsaspekten der unterschiedlichen statistischen Verfahren 

mehr und mehr Platz einräumen werden, da wir für konzeptuelle Betrachtungen oder Wiederholungen 

weitgehend auf diese Grundkonzepte zurückgreifen können und diese nur stellenweise ergänzen werden 

müssen. 

In diesem Kapitel sehen wir uns das einmal für die Schätzung und Testung von 

Mittelwertsunterschieden zwischen zwei Gruppen an. Aus der Theorie wissen wir (Bühner et al., 2025), 

dass wir dafür zwei Fälle unterscheiden müssen (strenggenommen gibt es noch einen dritten Fall, mit 

dem wir uns aber nicht befassen werden, siehe z.B. Wilcox, 2022, S. 203-210). Im ersten Fall ziehen 

wir zwei einfache Zufallsstichproben aus zwei unterschiedlichen Populationen und möchten den 

Unterschied zwischen den beiden Mittelwerten dieser Populationen schätzen bzw. gegen einen Testwert 

prüfen. In diesem Fall spricht man von zwei unabhängigen Stichproben. Bezüglich der Testung ist dabei 

häufig der Spezialfall der Gleichheit bzw. Ungleichheit der beiden Populationsmittelwerte interessant, 

was der Testung des Mittelwertsunterschieds gegen den Wert Null entspricht. Im zweiten Fall ziehen 

wir grundsätzlich nur eine einfache Zufallsstichprobe, aber erfassen für jeden Fall zwei aufeinander 

bezogene Variablen. Allerdings spricht man auch in diesem Fall von zwei Stichproben, allerdings nun 

von zwei abhängigen Stichproben. Dabei kann es sich etwa um die Erfassung derselben Variablen zu 

zwei verschiedenen Zeitpunkten handeln (etwa die Reaktionszeit vor und nach Einnahme eines 

bestimmten Medikaments) oder um zwei Variablen, die aber eindeutig miteinander zusammenhängen 

(etwa der systolische Blutdruck, einmal gemessen am linken Arm und einmal gemessen am rechten Arm 
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jeweils derselben Person). Aus Gründen, die sehr bald klarer sein werden, beginnen wir mit dem zweiten 

der beiden Fälle: der Schätzung und Testung der Mittelwertsunterschiede für zwei abhängige 

Stichproben. 

Schätzung und Testung der Mittelwertsunterschiede für zwei abhängige Stichproben 

Im Falle zweier abhängiger Stichproben lässt sich leicht einsehen, dass wir zur Schätzung und Testung 

des Unterschieds zwischen den Populationsmittelwerten auch die mittlere Differenz zwischen den 

beiden abhängigen Variablen schätzen bzw. testen können, da 

𝑋̅1 − 𝑋̅2 =
1

𝑛
∑ 𝑋1𝑖

𝑛

𝑖=1

−
1

𝑛
∑ 𝑋2𝑖

𝑛

𝑖=1

=
1

𝑛
∑(𝑋1𝑖 − 𝑋2𝑖)

𝑛

𝑖=1

=
1

𝑛
∑ 𝑋𝐷𝑖

𝑛

𝑖=1

= 𝑋̅𝐷 

mit 𝑋1𝑖 der ersten der beiden Zufallsvariablen für Fall (Person) 𝑖, 𝑋2𝑖 der zweiten der beiden 

Zufallsvariablen für Fall (Person) 𝑖, 𝑋𝐷𝑖 der Differenz der beiden Zufallsvariablen für Fall (Person) 𝑖, 

𝑋̅1, 𝑋̅2, 𝑋̅𝐷 den entsprechenden Mittelwerten, und 𝑛 dem Stichprobenumfang. Hier wurde bereits 

angenommen, dass sich die interessierenden Variablen durch entsprechende Zufallsvariablen 

approximieren lassen. 

Sofern sich nun 𝑋1𝑖 und 𝑋2𝑖 insbesondere als identisch und unabhängig normalverteilte 

Zufallsvariablen mit Erwartungswerten 𝜇1 und 𝜇2 und Varianzen 𝜎1
2 und 𝜎2

2 approximieren lassen, 

wissen wir ebenfalls, dass sich 𝑋𝐷𝑖 als identisch und unabhängig normalverteilte Zufallsvariable mit 

Erwartungswert 𝜇1 − 𝜇2 und Varianz 𝜎𝐷 approximieren lässt (für hinreichend große Stichproben würde 

uns aber auch hier wieder das zentrale Grenzwerttheorem zu Hilfe kommen). Die Varianz 𝜎𝐷 ist dabei 

nicht bekannt und muss aus der Stichprobe geschätzt werden. 

Alles, was wir benötigen, um den Erwartungswert einer solchen Zufallsvariable zu schätzen und 

zu testen, haben wir allerdings schon im vorhergehenden Kapitel besprochen! Denn obwohl es sich 

ursprünglich um zwei abhängige Variablen handelte, handelt es sich bei der Differenz der beiden 

Variablen nur um eine Variable für eine einfache Zufallsstichprobe. Können wir deren Wert schätzen, 

dann haben wir damit auch die Differenz der Mittelwerte der beiden ursprünglichen Variablen geschätzt. 

Testen wir deren Wert gegen eine bestimmte Konstante so haben wir die Differenz der beiden Variablen 

gegen einen bestimmten Wert geprüft. 
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D.h. wir können dazu in SPSS auch prinzipiell völlig gleich verfahren. Sehen wir uns das an 

einem Beispiel an, für den Sie den entsprechenden Datensatz in der Datei „Kap5daten.sav“ finden, die 

Sie wieder in dem elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu 

diesem Dokument finden können, das Sie unter https://osf.io/9tcx3/ herunterladen können. Es handelt 

sich dabei wiederum um fiktive Daten von 200 (ebenso fiktiven) Studierenden, deren Statistikwissen 

vor (Variable Punkte_vorher) und nach (Variable Punkte_nachher) dem Besuch eines Tutoriums mit 

einem entsprechenden Test gemessen wurde, der für jede:n Studierende:n einen Testwert zwischen 0 

und 100 Punkten ergibt. 

Um nun die Differenz der Populationsmittelwerte mittels der Mittelwertsdifferenz der beiden 

Variablen Punkte_vorher und Punkte_nachher zu schätzen und gleich auch gegen einen Testwert von 0 

zu testen, können wir eine neue Variable unter Transform >> Compute Variable… berechnen, die wir 

z.B. einfach Diff (für Differenz) nennen, siehe Abbildung 5.1. Durch Einfügen in eine Syntaxdatei (zur 

Dokumentation) und Ausführen der entsprechenden Kommandozeilen wird die neue Differenzvariable 

erzeugt. 

 

Abbildung 5.1. Bildung einer neuen Differenzvariable. 

https://osf.io/9tcx3/
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Für diese Differenzvariable können wir nun unter Analyze >> Compare Means and Proportions 

>> One-Sample T Test… einen Einstichproben t-Test gegen den Testwert 0 berechnen lassen und uns 

auch ein 95%-Konfidenzintervall (KI) sowie Effektstärken ausgeben lassen, siehe Abbildung 5.2. 

 

Abbildung 5.2. Anforderung eines Einstichproben t-Tests für unsere Differenzvariable. 

Am Ergebnis unseres Einstichproben t-Tests für unsere Differenzvariable erkennen wir, siehe 

Abbildung 5.3, dass die Punktschätzung für die Differenz zwischen den Populationsmittelwerten 𝑥̅𝐷 =

𝑥̅2 − 𝑥̅1 = 9.5 Testpunkte beträgt, mit einem 95%-KI von [6.84, 12.16]. Zudem weicht die 

Mittelwertdifferenz (mit 𝛼 = .05) signifikant vom Wert Null ab, t(199) = 7.05, p < .001, Cohens d = 

0.50 mit 95%-KI [0.35, 0.65]. Gemäß Cohens Heuristik (1988) liegt also ein kleiner bis mittlerer Effekt 

vor. Es sieht also ganz danach aus, als hätte das Tutorium (zumindest im Mittel) auch etwas für das 

Statistikwissen gebracht! 

Allerdings gibt es in SPSS noch einen bequemeren Weg dieselben Ergebnisse zu erhalten, den 

wir uns jetzt ansehen werden. Wir haben die Berechnung bisher nur deshalb etwas umständlicher 

durchgeführt, um uns davon zu überzeugen, dass (mit einem kleinen Unterschied) auf die bequemere 

Art und Weise genau dasselbe einfach im Hintergrund von SPSS durchgeführt wird. Für die bequemere 

Durchführung wählen wir unter Analyze >> Compare Means and Proportions nun nicht „One-Sample 

T Test“, sondern stattdessen „Paired-Samples T Test“ aus. Im sich öffnenden Fenster fügen wir die 

Variable Punkte_vorher unter „Variable1“ und Punkte_nachher unter „Variable2“ ein; alle übrigen 

Voreinstellungen lassen wir genauso wie sie sind, siehe Abbildung 5.4. Das Ergebnis ist in Abbildung 

5.5 dargestellt. 
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Abbildung 5.3. Ergebnis des Einstichproben t-Tests für unsere Differenzvariable. 

 

Abbildung 5.4. Eine bequemere Art in SPSS eine Schätzung und Testung (gegen 0) einer 

Mittelwertdifferenz für zwei abhängige Stichproben durchzuführen. 
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Abbildung 5.5. Ergebnisse der Durchführung des t-Tests für abhängige Stichproben in SPSS. 

Das praktische an dieser Art der Durchführung eines sog. t-Tests für abhängige Stichproben in 

SPSS ist, dass wir zusätzlich zu den Informationen, die wir mit dem Einstichproben t-Test für die 

Differenzvariable erhalten haben, noch einige andere nützliche Informationen erhalten. Zum einen 

bekommen wir in der Tabelle „Paired Samples Statistics“ die für einen Ergebnisbericht (siehe unten) 

ohnehin benötigten deskriptiven Statistiken (d.h. Stichprobenumfang, Mittelwerte und 

Standardabweichungen jeweils für beide Variablen). In der Tabelle „Paired Samples Correlations“ 

bekommen wir zudem noch den Pearson-Korrelationskoeffizienten für die beiden Variablen 𝑟 = .68, an 

dem wir erkennen, dass zwischen den beiden Variablen eine erhebliche Korrelation besteht. Gemäß 

Cohens Heuristiken (1988) gelten Korrelationskoeffizienten von 0.1-0.3 als klein, von 0.3-0.5 als mittel, 

und größer 0.5 als groß. Mit einer erheblichen Korrelation zwischen unseren beiden Variablen ist im 

vorliegenden Fall zu rechnen, da wir ja davon ausgegangen sind, dass die beiden Variablen voneinander 

abhängen. Hätten wir an dieser Stelle gesehen, dass zwischen den Variablen kaum ein Zusammenhang 

besteht (zumindest wie er durch den linearen Pearson Korrelationskoeffizienten überhaupt zum 
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Ausdruck kommen kann), hätte das unsere Annahme zweier abhängiger Variablen durchaus in Zweifel 

gezogen. 

In den Tabellen „Paired Samples Test“ und „Paired Samples Effect Sizes“ finden wir dieselben 

Werte, die wir bereits oben erhalten haben. Falls es verwundert, dass wir hier nun ein negatives 

Vorzeichen für die mittlere Differenz (und alle davon abgeleiteten Größen) bekommen, so liegt das 

schlichtweg daran, dass SPSS im Rahmen des t-Tests für abhängige Stichproben die Differenz 

Variable1-Variable2 schätzt bzw. gegen den Wert Null testet und wir oben bei der Bildung der 

Differenzvariablen die Differenz gerade umgekehrt (Variable2-Variable1) gebildet haben. Inhaltlich ist 

das Ergebnis aber ganz identisch: die Punkte im Test vor dem Tutorium sind im Mittel kleiner als im 

Test nach dem Tutorium. Deshalb ist es für die inhaltliche Interpretation stets wichtig, die deskriptiven 

Statistiken zu betrachten, da man an diesen gut erkennt, zu welchem Zeitpunkt der Mittelwert größer 

bzw. kleiner ist. Vom Betrag her sind alle Zahlen dieser beiden Tabellen identisch mit jenen aus 

Abbildung 5.3. 

Ein kleiner Nachteil des t-Tests für abhängige Stichproben in SPSS ist, dass die 

Mittelwertdifferenz nur über einen Umweg gegen einen anderen Testwert als Null getestet werden kann. 

Für den Einstichproben t-Test kann hierfür hingegen ein beliebiger Testwert gewählt werden. Gegen 

einen anderen Wert als Null zu testen kann zum Beispiel gewünscht sein, wenn eine Fragestellung 

vorliegt, in der ein Unterschied zwischen zwei abhängigen Variablen einen Mindestbetrag über- oder 

unterschreiten soll, wie es etwa in Fällen der Qualitätssicherung der Fall sein kann. Will man in so einem 

Fall dennoch den t-Test für abhängige Stichproben in SPSS verwenden, kann man den Wert gegen den 

man testen möchte, schlichtweg zum Subtrahenden addieren, d.h. wenn man die Nullhypothese 𝐻0: 𝜇1 −

𝜇2 = 5 testen möchte, kann man eine neue Variable 𝑥2𝑖
′ = 𝑥2𝑖 + 5 und anschließend den t-Test für 

abhängige Stichproben verwenden, um die Nullhypothese 𝐻0
′ : 𝜇1 − 𝜇2

′ = 0 zu testen. Die Verwerfung 

dieser Nullhypothese ist dann äquivalent zur Verwerfung der Nullhypothese 𝐻0. 
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Ergebnisbericht für Schätzung und Testung der Mittelwertsunterschiede für zwei abhängige 

Stichproben 

Wie nach jeder statistischen Analyse sind auch in diesem Fall die Ergebnisse in einem entsprechenden 

Ergebnisbericht festzuhalten. Dieser sollte jedenfalls die von SPSS ausgegebenen deskriptiven 

Statistiken für die beiden Variablen enthalten (mit Ausnahme des Standardfehlers, der ohnehin aus den 

anderen Größen berechnet werden könnte). Anschließend sollte die Punktschätzung für die 

Mittelwertdifferenz zusammen mit dem Konfidenzintervall (inkl. des verwendeten Signifikanzniveaus) 

angegeben werden. Zudem sollten wieder die wesentlichen Bestandteile des Signifikanztests (Art und 

Wert der Teststatistik, Freiheitsgrade, p-Wert) und schließlich die Effektstärke mit dem entsprechenden 

Konfidenzintervall angegeben werden. Für die Effektstärke wählen wir wiederum Cohens d. 

Für den vorliegenden Fall könnte ein adäquater Ergebnisbericht also wie folgt aussehen: „Der 

Mittelwert der Punkte beim Test vor dem Tutorium (M = 30.97, SD = 19.92) von n = 200 Studierenden 

war niedriger als der Mittelwert der Punkte beim Test nach dem Tutorium (M = 40.47, SD = 25.78). Die 

Punktschätzung für die mittlere Populationsdifferenz ergab sich entsprechend zu 9.5 mit einem 95%-KI 

[6.84, 12.16]. Diese Mittelwertdifferenz unterscheidet sich (mit 𝛼 = .05) signifikant von Null, t(199) = 

7.05, p < .001, Cohens d = 0.50 mit 95%-KI [0.35, 0.65]. Gemäß Cohens Heuristik (1988) liegt also ein 

kleiner bis mittlerer Effekt vor.“ Das APA-Format ist selbstverständlich auch wieder zu beachten. 

Teststärke und Stichprobenplanung 

Auch für einen t-Test für abhängige Stichproben kann eine Stichprobenplanung mittels G*Power für 

eine gewünschte Teststärke bei gegebenem Signifikanzniveau und vermuteter Effektstärke 

vorgenommen werden. Unter „Test family“ ist dafür wiederum „t tests“ auszuwählen. Unter „Statistical 

test“ ist diesmal „Means: Difference between two dependent means (matched pairs)“ auszuwählen. 

Unter “Type of power analysis” ist wieder “A priori: Compute required sample size – given 𝛼, power, 

and effect size” auszuwählen. Bei den “Input Parameters” ist wieder anzugeben, ob eine gerichtete (“one 

tail“) oder eine ungerichtete („two tails“) statistische Hypothese getestet werden soll. Bei der 

Effektstärke ist wiederum die vermutete Effektstärke in Einheiten von Cohens d anzugeben. Das 

Signifikanzniveau ist wiederum unter „𝛼 err prob“ und die gewünschte Teststärke unter „Power (1-𝛽 

err prob)“ anzugeben. 
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Angenommen, wir vermuteten einen Effekt der Stärke 0.3 für einen Unterschied zwischen den 

Mittelwerten zweier abhängiger Stichproben (d.h. wir hätten eine ungerichtete Hypothese), möchten uns 

mit 𝛼 = .005 wiederum stark gegen einen Fehler 1. Art absichern und einen Effekt der veranschlagten 

Stärke schon mit einer Wahrscheinlichkeit von mindestens 80% detektieren (d.h. ein Ergebnis „𝑝 < 𝛼“ 

in 80% einer Serie unendlicher vieler hypothetischer, äquivalenter Replikationen erhalten), dann wären 

in G*Power die in Abbildung 5.6 gezeigten Einstellungen vorzunehmen. Abbildung 5.7 zeigt, dass sich 

daraus ein benötigter Stichprobenumfang von n = 152 ergibt. 

 

Abbildung 5.6. Einstellungen in G*Power für das im Text beschriebene Beispiel. 
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Abbildung 5.7. Ergebnisse der im Text beschriebenen Stichprobenplanung. 

Voraussetzungen für den t-Test für abhängige Stichproben 

Da es sich bei dem t-Test für abhängige Stichproben gemäß den vorhergehenden Erläuterungen um 

nichts anderes als einen Einstichproben t-Test in Verkleidung handelt, sind auch die Voraussetzungen 

ganz analog. D.h., es muss sich um mindestens intervallskalierte Variablen handeln, die Varianz der 

Differenz der Variablen ist nicht bekannt und muss aus den Daten geschätzt werden, und die Differenz 

der Variablen muss sich entweder selbst durch eine Normalverteilung approximieren lassen oder der 

Stichprobenumfang muss hinreichend groß sein. 
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Schätzung und Testung der Mittelwertsunterschiede für zwei unabhängige Stichproben 

Auch für die Schätzung und Testung der Mittelwertsunterschiede für zwei unabhängige Stichproben 

haben wir die wesentlichen Grundkonzepte bereits im vorhergehenden Kapitel rekapituliert. Der einzig 

neu hinzukommende Aspekt ist der theoretische Befund, dass, wenn die Schätzfunktionen der beiden 

Populationsmittelwerte 𝑋̅1 und 𝑋̅2 jeweils durch identisch und unabhängig verteilte Zufallsvariablen 

approximiert werden können und die beiden Populationsvarianzen gleich (oder zumindest hinreichend 

gleich, siehe unten) sind, die Teststatistik 

𝑇 =
𝑋̅1 − 𝑋̅2 − (𝜇1 − 𝜇2)

𝑆𝐸𝑀𝐷
 

einer t-Verteilung mit 𝜈 = 𝑛1 + 𝑛2 − 2 Freiheitsgraden folgt. Hier werden mit 𝜇1 und 𝜇2 die beiden 

unbekannten Populationsmittelwerte, mit 𝑆𝐸𝑀𝐷 = √𝑆𝑝𝑜𝑜𝑙
2 (

1

𝑛1
+

1

𝑛2
) die Schätzfunktion des 

Standardfehlers der Mittelwertdifferenz, wobei hier 𝑆𝑝𝑜𝑜𝑙
2 =

(𝑛1−1)𝑆1
2+(𝑛2−1)𝑆2

2

𝑛1+𝑛2−2
 die Schätzfunktion der 

sogenannten gepoolten Varianz ist, und mit 𝑛1 und 𝑛2 die beiden Stichprobenumfänge bezeichnet (vgl. 

z.B. Wilcox, 2022, S. 171). 

Für die Punktschätzung der Populationsmittelwertdifferenz sind dann wiederum lediglich die 

Schätzfunktionen durch die Schätzwerte aus den konkreten Stichproben zu ersetzen, d.h. der Schätzwert 

für 𝜇1 − 𝜇2 ist schlichtweg 𝑥̅1 − 𝑥̅2. Analog kann mittels den prinzipiell berechenbaren (nicht von uns 

aber z.B. von SPSS) Quantilen der t-Verteilung das konkrete (1 − 𝛼)-Konfidenzintervall zur 

Intervallschätzung der Populationsmittelwertdifferenz auf Basis der gegebenen Stichproben zu 

[(𝑥̅1 − 𝑥̅2) − 𝑡
1−

𝛼
2

∙ 𝑆𝐸𝑀𝐷 , (𝑥̅1 − 𝑥̅2) + 𝑡
1−

𝛼
2

∙ 𝑆𝐸𝑀𝐷] = [𝑢, 𝑜] 

ermittelt werden. 

Schließlich kann mittels der Realisation der Teststatistik 𝑇 für die gegebenen Stichproben die 

Wahrscheinlichkeit (= p-Wert) berechnet werden (wiederum nicht von uns, sondern z.B. von SPSS), 

eine so extreme oder extremere Teststatistik unter der Annahme der Gültigkeit der Nullhypothese (d.h. 

für einen bestimmten Wert von 𝜇1 − 𝜇2, z.B. für 𝜇1 − 𝜇2 = 0) zu erhalten. Ist dieser p-Wert kleiner 
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oder gleich als das vorab festgelegte Signifikanzniveau, kann wiederum aufgrund desselben 

Plausibilitätsarguments wie im vorhergehenden Kapitel die Nullhypothese verworfen werden, da dann 

die Teststatistik mit Sicherheit in dem auf der Basis des Signifikanzniveaus berechneten kritischen 

Bereich liegt. 

Um all die nötigen Berechnungen kümmert sich netterweise SPSS, solange wir nur die richtigen 

Eingaben tätigen und die Ausgabe richtig lesen können. Schauen wir uns daher wiederum an einem 

Beispiel an, wie das geht. Dazu arbeiten wir wieder mit einem fiktiven Datensatz, in dem wir uns diesmal 

anschauen wollen, ob (ebenfalls fiktive) Psychologiestudierende im Mittel einen höheren IQ haben als 

(natürlich genauso fiktive) BWL-Studierende. Der Datensatz ist in der Datei „Kap5daten2.sav“ zu 

finden, die Sie wieder in dem elektronischen Ergänzungsmaterial (Engl.: electronic supplementary 

material) zu diesem Dokument finden können. 

Wenn wir die Datendatei in SPSS geöffnet haben, können wir unter Analyze >> Compare 

Means and Proportions diesmal die Option „Independent-Samples T Test“ auswählen. Im sich 

öffnenden Fenster fügen wir die Variable IQ in das Feld „Test Variable(s)“ ein und die Variable Gruppe 

in das Feld „Grouping Variable“. Bei der Variable Gruppe handelt es sich um eine nominalskalierte 

Variable, die uns sagt, welchen Studiengang ein:e spezifische:r Studierende:r gewählt hat. Dabei ist der 

Studiengang Psychologie mit der Zahl 0 und der Studiengang BWL mit der Zahl 1 kodiert (wer sich 

schon beim Öffnen der Datei einen Überblick über die Variablen und deren Eigenschaften verschafft 

hat, ist jetzt klar im Vorteil). Diese Zuweisung der Gruppen-Codes zu den Gruppen, deren Mittelwerte 

verglichen werden sollen, müssen wir jetzt noch unter „Define Groups…“ vornehmen (wir könnten 

nämlich auch zwei Gruppen auf Basis einer Variablen mit 3, 4, oder beliebig vielen Kategorien 

vergleichen). Im Menü „Define Groups“ spezifizieren wir daher „Group 1“ mit dem Wert 0 (für die 

Psychologiestudierenden) und „Group 2“ mit dem Wert 1 (für die BWL-Studierenden), siehe Abbildung 

5.8. Danach klicken wir auf „Continue“ und fordern unter „Options“ zur Abwechslung noch breitere 

99%-Konfidenzintervalle für eine näherungsweise Kompatibilität mit einem strengen Signifikanzniveau 

von 𝛼 = .005 (für eine gerichtete Hypothese) an. Alle übrigen Voreinstellungen lassen wir wie sie sind 

und fügen alles in die Syntax ein und führen die neuen Kommandozeilen aus. Die daraufhin erzeugte 

Ausgabe ist in Abbildung 5.9 dargestellt. 
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Abbildung 5.8. Spezifikation des t-Tests für unabhängige Stichproben. 

In der Tabelle „Group Statistics“ finden wir dieses Mal unsere deskriptiven Statistiken. Wir 

sehen, dass in der Gruppe der Psychologiestudierenden der IQ von 27 Studierenden gemessen wurde 

und im Mittel 108.89 beträgt (mit einer Standardabweichung von 10.26). Der mittlere IQ in der Gruppe 

der BWL-Studierenden, die nur aus 19 Studierenden bestand, beträgt hingegen nur 99.95 (mit einer sehr 

ähnlichen Standardabweichung von 10.94). 

In der Tabelle „Independent Samples Test“ finden wir die Ergebnisse der Punkt- und 

Intervallschätzung für unsere Mittelwertdifferenz sowie unseres Hypothesentests für die Nullhypothese 

𝐻0: 𝜇1 − 𝜇2 = 0. Auffällig ist dabei, dass wir in dieser Tabelle zwei Zeilen haben, in denen wir jeweils 

t-Werte, Freiheitsgrade, p-Werte etc. vorfinden. Dies liegt daran, dass eine oben bereits erwähnte 

Voraussetzung für die Berechnung der Konfidenzintervalle bzw. des Hypothesentests die Gleichheit der 

Populationsvarianzen war. In der Tat handelt es sich bei dem t-Test, für den diese Voraussetzung gelten 

muss, genauer gesagt um den sog. Student’schen t-Test (Student, 1908). Ist die Voraussetzung der 

Varianzgleichheit (oder Homoskedastizität) nicht erfüllt, kann weiterhin mit einer t-Verteilung 

gerechnet werden, solange die Freiheitsgrade entsprechend korrigiert werden. Bei dieser Art der 

Berechnung handelt es sich dann um den sog. t-Test nach Welch (oder kurz: Welch-Test). SPSS führt 

im Falle eines t-Tests für unabhängige Stichproben einfach immer beide Tests durch. Die Ergebnisse 

des Student’schen t-Tests befinden sich in der oberen Zeile der Tabelle „Independent Samples Test“, 

die Ergebnisse des Welch-Tests in der unteren. Ganz vorne in dieser Tabelle finden sich auch noch die 
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Ergebnisse eines sog. Levene-Tests. Dabei handelt es sich um einen statistischen Test, der die Gleichheit 

der Varianzen in den beiden Gruppen prüft (d.h. die Nullhypothese lautet: die Varianzen sind gleich). 

Ist dieser Test signifikant (üblicherweise mit 𝛼 = .05), so bedeutet das, dass sich die Varianzen 

signifikant unterscheiden. In diesem Fall wäre dann jedenfalls die untere Zeile, also die Ergebnisse des 

Welch-Tests zu berichten. Ist der Levene-Test nicht signifikant, könnte man argumentieren, dass man 

Varianzhomogenität annehmen kann (zumindest kann man sie nicht mit Irrtumswahrscheinlichkeit 𝛼 

verwerfen) und daher die Ergebnisse des Student’schen t-Tests berichten. Allerdings ist es so, dass man 

durch die Korrektur der Freiheitsgrade in der Praxis kaum je deutlich an Teststärke verliert, sich aber 

gleichzeitig bezüglich Fehler 1.Art durch Berücksichtigung ungleicher Populationsvarianzen absichert. 

Daher (neben weiteren Gründen) argumentieren manche Autoren auch dafür, einfach immer die 

Ergebnisse des Welch-Tests zu berichten, unabhängig von den Ergebnissen des Levene-Tests (Ruxton, 

2006; Zimmerman, 2004). 

Hier in unserem Fall ist der Levene-Test nicht signifikant, F = 0.152, p = .698. Wir werden 

unten aber dennoch aus den oben genannten Gründen die Ergebnisse des Welch-Tests berichten. Auch 

Sie können daher im Rahmen der Übungen in dieser Tabelle durchwegs die Ergebnisse des Welch-Tests 

in der unteren Zeile verwenden. In dieser Zeile finden wir wieder einen t-Wert und die nach Welch 

korrigierte Anzahl an Freiheitsgraden in der Spalte „df“ für „degrees of freedom“. Die Anzahl der 

Freiheitsgrade entspricht keiner ganzen Zahl mehr, das kommt durch die Korrektur nach Welch 

zustande. In den nächsten beiden Spalten finden wir p-Werte für gerichtete und ungerichtete 

Hypothesen. In unserem Fall würden wir diesmal den p-Wert für gerichtete Hypothesen („One-Sided 

p“) berichten, da wir untersuchen wollten, ob Psychologiestudierende einen höheren IQ als BWL-

Studierende haben, d.h. es lag eine gerichtete Hypothese vor. Danach finden wir die Punktschätzung für 

die Populationsmittelwertdifferenz, deren geschätzten Standardfehler und das aus all diesen Größen 

konstruierte 99%-Konfidenzintervall. 

In der Tabelle „Independent Samples Effect Sizes“ finden wir wiederum Punktschätzungen und 

Konfidenzintervalle für drei verschiedene Effektstärken, von denen uns vorwiegend wiederum Cohens 

d interessiert. Für zusätzliche Erläuterungen zu den anderen beiden Effektstärken siehe z.B. Bühner und 

Ziegler (2017). 
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Abbildung 5.9. Ausgabe für den t-Test für unabhängige Stichproben. 

Ergebnisbericht für Schätzung und Testung der Mittelwertsunterschiede für zwei unabhängige 

Stichproben 

Ein Bericht dieser Ergebnisse könnte wie folgt aussehen: „Die untersuchte Stichprobe von 

Psychologiestudierenden hatte im Mittel einen höheren IQ (M = 108.89, SD = 10.26, n = 27) als die 

untersuchte Stichprobe von BWL-Studierenden (M = 99.95, SD = 10.94, n = 19). Ein Welch-Test ergab, 

dass der Mittelwertsunterschied von 8.94 mit 99%-KI [0.28, 17.61] signifikant war (mit 𝛼 = .005, 

gerichtet), t(37.30) = 2.80, p = .004, Cohens d = 0.85 mit 99%-KI [0.04, 1.65]. Gemäß Cohens 

Heuristiken (1988) entspricht die Punktschätzung einem großen Effekt.“ Die APA-Richtlinien für 

Berichte von statistischen Ergebnissen sind selbstverständlich wiederum einzuhalten. 

Teststärke und Stichprobenplanung 

Auch für einen t-Test für unabhängige Stichproben kann eine Stichprobenplanung mittels G*Power für 

eine gewünschte Teststärke bei gegebenem Signifikanzniveau und vermuteter Effektstärke 

vorgenommen werden. Unter „Test family“ ist dafür wiederum „t tests“ auszuwählen. Unter „Statistical 

test“ ist diesmal „Means: Difference between two independent means (two groups)“ auszuwählen. Unter 

“Type of power analysis” ist wieder “A priori: Compute required sample size – given α, power, and 

effect size” auszuwählen. Bei den “Input Parameters” ist wieder anzugeben, ob eine gerichtete (“one 

tail“) oder eine ungerichtete („two tails“) statistische Hypothese getestet werden soll. Bei der 
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Effektstärke ist wiederum die vermutete Effektstärke in Einheiten von Cohens d anzugeben. Das 

Signifikanzniveau ist wiederum unter „α err prob“ und die gewünschte Teststärke unter „Power (1-β err 

prob)“ anzugeben. Unter „Allocation ratio N2/N1“ ist schließlich das Verhältnis der beiden 

Stichprobenumfänge zueinander anzugeben, da es ja im Fall unabhängiger Stichproben – wie wir auch 

im vorhergehenden Beispiel gesehen haben – sein kann, dass ungleich viele Messwerte in den beiden 

Gruppen erhoben werden. 

 

Abbildung 5.10. Für unser Beispiel nötige Eingaben in G*Power. 
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Abbildung 5.11. Nötiger Stichprobenumfang für unser (wieder einmal fiktives) Replikationsexperiment. 

Zur Illustration der Stichprobenplanung nehmen wir an, dass wir das vorhergehende Beispiel 

replizieren wollen. Allerdings haben wir ein bisschen Zweifel an der Effektstärke, die wir vorhin 

erhalten haben. Die beiden Gruppen waren ja, was ihre Größe betrifft, recht überschaubar und es ist 

durchaus denkbar, dass wir zufällig einige sehr intelligente Leute unter den Psychologiestudierenden 

erwischt haben und zufällig ausgerechnet keine entsprechend intelligenten Leute unter den BWL-

Studierenden. Daher möchten wir in unserem Replikationsexperiment auch eine kleinere Effektstärke 

von Cohens d = 0.5 immer noch verlässlich mit einer Teststärke von 90% detektieren können. Das 
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Signifikanzniveau belassen wir auf den strengen 𝛼 = 0.5%. Wie in der vorhergehenden Untersuchung 

haben wir auch für die Replikation eine gerichtete Hypothese vorliegen. Der Einfachheit halber möchten 

wir allerdings Daten für gleich viele Psychologiestudierende wie für BWL-Studierende erheben, d.h. es 

soll 𝑛1/𝑛2 = 1 gelten. Die diesen Vorgaben entsprechenden, für die Ermittlung des Stichprobenumfang 

nötigen Einstellungen in G*Power sind in Abbildung 5.10 gezeigt. 

Die Ergebnisse der Berechnung sind in Abbildung 5.11 gezeigt. Für unser 

Replikationsexperiment benötigen wir 242 Personen (d.h. 121 in jeder Gruppe). 

Voraussetzungen für den t-Test für unabhängige Stichproben 

Wie oben bereits teilweise erläutert müssen auch für den t-Test für unabhängige Stichproben einige 

Voraussetzungen erfüllt sein, damit wir belastbare Ergebnisse erhalten. Diese Voraussetzungen sind: 

• Die Varianzen beider Populationen, aus welchen die Stichproben gezogen wurden, sind nicht 

bekannt und müssen mittels der Stichprobendaten geschätzt werden. 

• Es muss sich um unabhängige Zufallsstichproben handeln. D.h. insbesondere, es dürfen keine 

systematischen Abhängigkeiten in den Daten vorliegen (z.B. geclusterte Datenstruktur wie etwa 

Daten von Schüler:innen aus gewissen Klassen in einer Gruppe, Daten von Schüler:innen aus 

gewissen anderen Klassen in anderer Gruppe). 

• Die Messwerte sind mindestens intervallskaliert. 

• Die Messwerte sind in der jeweiligen Population normalverteilt oder es liegen hinreichend große 

Stichproben vor. 

• (Die Varianzen in beiden Populationen sind gleich.) 

Der letzte Punkt wurde eingeklammert, da dieser nur eine Voraussetzung für den Student’schen 

t-Test darstellt. Der Welch-Test berücksichtigt ungleiche Varianzen und wird in SPSS ohnehin immer 

durchgeführt. Diese Voraussetzung muss also nicht separat geprüft werden. Die Unkenntnis bezüglich 

der Varianzen in den Stichproben und das Intervallskalenniveau sind durch adäquate Fragestellungen 

bzw. Erhebungsinstrumente festgelegt, auch hier ist daher für uns nichts im Rahmen der Datenanalyse 

zu prüfen. Die Unabhängigkeit der Zufallsstichproben wird durch das Untersuchungsdesign festgelegt. 

Besteht diese Unabhängigkeit nicht, muss auf andere (hierarchische) Verfahren der Datenanalyse 
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zurückgegriffen werden, die allerdings hier nicht behandelt werden (für eine Einführung in solche 

Verfahren siehe z.B. Field, 2024). 

Die vierte Voraussetzung, d.h. die Normalverteilung der Messwerte in der jeweiligen 

Population, ist allerdings im vorliegenden Fall von uns zu prüfen, da im vorliegenden Fall keine 

hinreichend großen Stichproben vorliegen. Wie man für diese Voraussetzungsprüfung verfahren kann, 

schauen wir uns im nächsten Abschnitt an. 

Überprüfung der Normalverteilungsvoraussetzung 

Für die Gültigkeit unserer Argumentation (= t-Verteilung der Teststatistik) war ausschlaggebend, dass, 

jedenfalls bei kleinen Stichproben, die Variablen 𝑋1𝑖 und 𝑋2𝑖 als identisch und unabhängig 

normalverteilte Zufallsvariablen modelliert (oder approximiert) werden können. D.h. diese 

Voraussetzung bezieht sich auf die Populationen, aus denen die jeweiligen Stichproben gezogen werden, 

nicht auf die Verteilung der Daten in den konkreten, vorliegenden Stichproben. D.h. auch die 

Überprüfung dieser Voraussetzung kann strenggenommen niemals ein definitives Ergebnis erbringen, 

sondern lediglich Indikatoren, die mehr oder weniger für eine Verletzung der Voraussetzung oder die 

Kompatibilität der vorliegenden Daten mit der Voraussetzung sprechen. Im Folgenden schauen wir uns 

mehrere dieser Indikatoren an. 

Dazu wählen wir unter Analyze >> Descriptive Statistics die Option „Explore…“. Dort fügen 

wir die Variable IQ im Feld „Dependent List“ und die Variable Gruppe im Feld „Factor List“ ein. Unter 

„Plots…“ fordern wir „Normality plots with tests“ an und wählen „Stem-and-Leaf“ ab (per 

Voreinstellung leider eingestellt), siehe Abbildung 5.12. 

In der resultierenden Ausgabe finden wir in der Tabelle „Tests of Normality“ sog. Kolmogorov-

Smirnov- sowie Shapiro-Wilk-Tests, die die Kompatibilität mit der Normalverteilungsvoraussetzung 

jeweils in beiden Gruppen prüfen, siehe Abbildung 5.13. Wie oben schon beim Levene-Test gilt auch 

hier: falls diese Tests signifikant sind (üblicherweise mit 𝛼 = .05), dann ist dies ein Hinweis auf eine 

Verletzung der Voraussetzung. Allerdings weisen die Tests gerade bei geringen Stichprobenumfängen 

wie viele statistische Verfahren keine große Teststärke auf (siehe z.B. Wilcox, 2022) und sind dadurch 

prädestiniert dafür gerade dann zu „versagen“, wenn sie am ehesten benötigt werden (für große 
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Stichproben kommt uns ohnehin das zentrale Grenzwerttheorem „zu Hilfe“). Umgekehrt heißt das aber, 

dass wenn einer dieser Tests bei geringen Stichprobenumfängen eine signifikante Abweichung anzeigt, 

man wohl gut daran tut, diese Voraussetzung als verletzt zu betrachten. Sind die Tests jedoch nicht 

signifikant, wie hier in unserem Fall, gibt es noch weitere Indikatoren, die man inspizieren kann. 

 

Abbildung 5.12. Anforderung von Tests auf Verträglichkeit mit Normalverteilungsvoraussetzung. 

 

Abbildung 5.13. Kolmogorov-Smirnov- und Shapiro-Wilk-Tests zur Prüfung der Verträglichkeit mit 

der Normalverteilungsvoraussetzung. 

In der Tabelle „Descriptives“ findet wir Angaben zu Schiefe (Skewness) und Wölbung 

(Kurtosis) sowie deren Standardfehler jeweils für beide Gruppen. In Kapitel 3 haben wir bereits kurz 

angedeutet, dass diese Kenngrößen auch zur Abschätzung der Verträglichkeit mit der 
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Normalverteilungsannahme herangezogen werden können. Dies beruht darauf, dass die analytische 

Normalverteilungskurve sowohl eine Schiefe als auch eine Exzess-Wölbung (= was SPSS als Kurtosis 

ausgibt) von Null hat. Werden nun wiederholt einfache Zufallsstichproben einer normalverteilten 

Zufallsvariable gezogen, so sind die empirischen Schiefen und Wölbungen, die man für deren 

empirische Verteilungen erhält, nicht exakt gleich Null, aber mit höherer Wahrscheinlichkeit um Null 

herum verteilt als weit von Null entfernt. Etwas vereinfacht gesagt, kann man sagen, die meisten 

(präziser: etwa 95%) Werte von Schiefe und Kurtosis bei vielen solcher Zufallsstichproben, die 

tatsächlich aus einer Normalverteilung kommen, sollten innerhalb von zwei Standardfehlern um den 

Wert Null herum zu liegen kommen. Nur etwa 5% sollten weiter entfernt sein. Das kann nun verwendet 

werden, um grob abzuschätzen, ob die Schiefe und Kurtosis, die man im konkret vorliegenden Fall 

erhalten hat, einem Fall entspricht, den man nur äußerst selten erhalten würde, wenn die empirischen 

Verteilungen tatsächlich aus Zufallsziehungen einer normalverteilten Zufallsvariable generiert werden 

würden. Dazu betrachtet man einfach die Absolutwerte für Schiefe und Kurtosis für die beiden Gruppen 

und wenn einer der Werte mehr als zweimal so groß wie sein Standardfehler ist, dann ist das ein weiterer 

Indikator gegen die Verträglichkeit mit der Normalverteilungsvoraussetzung. In unserem Fall ist die 

Schiefe (bzw. ihr Betrag oder Absolutwert, d.h. der Wert ohne sein Vorzeichen) in der Stichprobe der 

Psychologie-Studierenden 0.19, was deutlich kleiner als der Standardfehler von 0.448 ausfällt. Der Wert 

für Kurtosis von 1.211 ist zwar größer als sein Standardfehler von 0.872, aber immer noch deutlich 

kleiner als das Zweifache dieses Werts. Die Werte für Schiefe (0.241) und Kurtosis (0.553) in der 

Stichprobe der BWL-Studierenden sind beide kleiner als ihre Standardfehler, deuten also ebenfalls nicht 

auf eine Verletzung der Normalverteilungsvoraussetzung hin. 

Die beiden letzten Indikatoren (die wir hier zumindest kurz erläutern) sind in den beiden 

Grafiken mit der Überschrift „Normal Q-Q Plot of Intelligenzquotient“ zu finden. Solange sich die 

Punkte nahe um die schwarze Linie herum verteilen, spricht dies für die Kompatibilität mit der 

Normalverteilungsvoraussetzung, ansonsten dagegen. Auch hier deutet nichts auf grobe Verletzungen 

dieser Voraussetzung hin. 
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In unserem Fall scheint also die Berechnung eines t-Tests für unabhängige Stichproben in Form 

eines Welch-Tests zur Beantwortung unserer Fragestellung legitim. Was aber, wenn die 

Normalverteilungsvoraussetzung tatsächlich (grob) verletzt ist? In diesem Fall empfiehlt es sich auf 

Verfahren zurückzugreifen, die robuster gegenüber dieser Voraussetzung bzw. diese Voraussetzung 

nicht haben. Für eine Erläuterung solcher Verfahren wird an dieser Stelle allerdings auf weiterführende 

Literatur verwiesen (siehe z.B. Bühner & Ziegler, 2017; Wilcox, 2022; Field, 2024). 

 

Abbildung 5.14. „Normal Q-Q Plots“ zur Einschätzung der Kompatibilität mit der 

Normalverteilungsvoraussetzung. 
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Übungsaufgaben 

Die Datendateien, die Sie für manche der folgenden Übungsaufgaben benötigen, finden Sie in dem 

elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument, 

das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Beispiel 5.1 

Welche Voraussetzungen müssen für einen t-Test für abhängige Stichproben erfüllt sein? 

(a) Die gemessenen Variablen müssen mindestens intervallskaliert sein. 

(b) Die Varianzen der gemessenen Variablen müssen bekannt sein. 

(c) Die gemessenen Variablen müssen unabhängig voneinander sein. 

(d) In kleinen Stichproben müssen die gemessenen Variablen jeweils normalverteilt sein bzw. 

durch normalverteilte Zufallsvariablen approximiert werden können. 

Beispiel 5.2 

Welche Voraussetzungen müssen für einen t-Test für unabhängige Stichproben erfüllt sein? 

(a) Soll ein Student’scher t-Test gerechnet werden, müssen die Varianzen in beiden Populationen 

gleich sein. 

(b) Soll ein t-Test nach Welch gerechnet werden, müssen die Varianzen in beiden Populationen 

gleich sein. 

(c) Die gemessene Variable muss in beiden Gruppen normalverteilt sein bzw. durch eine 

normalverteilte Zufallsvariable approximiert werden können, sofern die Stichproben in beiden 

Gruppen nicht hinreichend groß sind. 

(d) Die gemessene Variable muss mindestens nominalskaliert sein. 

  

https://osf.io/9tcx3/
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Beispiel 5.3 

Welche Aussage(n) trifft(treffen) zu? 

(a) Mit dem Levene-Test kann die Normalverteilungsvoraussetzung geprüft werden. 

(b) Der Shapiro-Wilk-Test überprüft Homoskedastizität. 

(c) Eine Normalverteilung hat eine Schiefe von 3. 

(d) Ist ein Kolmogorov-Smirnov-Test signifikant, dann ist das ein Hinweis auf eine Verletzung der 

Normalverteilungsvoraussetzung. 

Beispiel 5.4 

In der Datei „Kap5UE4.sav“ finden Sie einen Datensatz für 67 (fiktive) psychiatrische Patient:innen, 

deren depressive Symptomatik vor und nach einer Behandlung mit Becks Depressionsinventar 

untersucht wurde, was für jede:n Patient:in je einen Messwert zwischen 0 und 63 ergibt. Die Variable 

BDI_t1 beinhaltet die BDI-Werte zu Testzeitpunkt 1 und die Variable BDI_t2 die BDI-Werte zu 

Testzeitpunkt 2. Es soll mit einem Signifikanzniveau von 𝛼 = .005 statistisch geprüft werden, ob die 

BDI-Werte der untersuchten Patient:innen von Zeitpunkt 1 zu Zeitpunkt 2 im Mittel abnehmen. Erstellen 

Sie für Ihre Ergebnisse einen mit den APA-Richtlinien konformen Ergebnisbericht. 

Der Datensatz für dieses Beispiel beruht auf dem Datensatz für ein entsprechendes Beispiel bei 

Bühner und Ziegler (2017, S. 305-307). Aufgrund leicht abgeänderter Messwerte stimmen allerdings 

die sich ergebenden Resultate nicht exakt überein. 

Beispiel 5.5 

Uns interessiert, ob die Studierenden im Kurs „Anwendung statistischer Verfahren am Computer“ den 

Aussagen „Ich habe Angst vor der nächsten Statistikprüfung“ (Variable mathe_mathe3) und „Ich hasse 

Statistik“ (Variable mathe_mathe2) unterschiedlich stark zustimmen. Sie finden die entsprechenden 

Daten in der Datei „Kap3daten.sav“. Wählen Sie einen passenden statistischen Test, um die 

Fragestellung zu erhellen. Berichten Sie Ihre Ergebnisse gemäß APA Richtlinien. 
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Beispiel 5.6 

Männer sind bekanntlich im Mittel größer als Frauen. Trifft dies auch auf Studierende im Kurs 

„Anwendung statistischer Verfahren am Computer“ zu? Sie finden die entsprechenden Daten in der 

Datei „Kap3daten.sav“. Wählen Sie einen passenden statistischen Test, um die Fragestellung zu 

erhellen. Berichten Sie Ihre Ergebnisse gemäß APA Richtlinien. 

Beispiel 5.7 

Männer haben bekanntlich größere Füße als Frauen. Trifft dies auch auf Studierende im Kurs 

„Anwendung statistischer Verfahren am Computer“ zu? Sie finden die entsprechenden Daten in der 

Datei „Kap3daten.sav“. Wählen Sie einen passenden statistischen Test und eine passende Variable, um 

die Fragestellung zu erhellen. Berichten Sie Ihre Ergebnisse gemäß APA Richtlinien. 

Sie können für diese Übung davon ausgehen, dass die Voraussetzungen für einen t-Test für 

unabhängige Stichproben erfüllt sind. 

Beispiel 5.8 

Überprüfen Sie die Voraussetzungen für einen t-Test für unabhängige Stichproben für das 

vorhergehende Beispiel. 

Beispiel 5.9 

Ein Medikament werde als praktisch effektiver angesehen, wenn es eine um mindestens Cohens d = 0.2 

höhere Wirkung als ein Plazebo hat. Aus Pilotstudien ist bekannt, dass die Varianzen für Experimental- 

und Plazebobedingungen sehr ähnlich sind. Das Verfahren, um die Wirksamkeit des Medikaments zu 

messen, liefert eine metrische Variable. Wie groß muss die Stichprobe sein, um bei einer 

Irrtumswahrscheinlichkeit von α = 0.005 für einen Effekt der Stärke d = 0.2 in 80% der Fälle (= 

Teststärke) einen signifikanten Unterschied zwischen den Mittelwerten der Experimental- und 

Plazebogruppe zu finden? Nehmen Sie zur Beantwortung dieser Frage an, dass es sich bei Experimental- 

und Plazebogruppe jeweils um einfache, voneinander unabhängige Zufallsstichproben handelt. 

Beispiel 5.10 

Aus einer Pilotstudie ergibt sich eine Wirksamkeit für eine Therapie von Cohens d = 0.95. Dabei handelt 

es sich um die Verringerung depressiver Symptomatik durch die Therapie bei am Pilotexperiment 
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teilnehmenden Personen. Die depressive Symptomatik wurde jeweils vor und nach der Therapie 

erhoben. Mit einem Prüfexperiment soll dieses vielversprechende Ergebnis nun statistisch abgesichert 

werden. 

Verwenden Sie G*Power, um die nötige Stichprobengröße für eine Teststärke von 80% und 

eine Irrtumswahrscheinlichkeit von 0.5% zu ermitteln. 

Beispiel 5.11 

Ein Forscher möchte wissen, ob es einen Unterschied im Angstniveau zwischen zwei bestimmten 

Personengruppen gibt. Daher rekrutiert er aus beiden betreffenden Populationen (im Folgenden schlicht 

als Gruppe 1 und 2 bezeichnet) Personen, die einen entsprechenden Fragebogen ausfüllen. Anschließend 

untersucht er die erhobenen Daten mit SPSS und erhält die in Abbildung 5.15 gezeigte Ausgabe. 

Wie würden Sie diese Ergebnisse (in 2-3 Sätzen) für die Wahl eines Signifikanzniveaus von 𝛼 

= .05 berichten? Wie groß ist die Effektstärke gemäß Cohens Heuristik (1988)? 

 

Abbildung 5.15. Ausgabe für die Fragestellung aus Beispiel 5.11. 
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Beispiel 5.12 

Ein Forscher möchte wissen, ob es einen Unterschied im Depressionsniveau zwischen zwei bestimmten 

Personengruppen gibt. Daher rekrutiert er aus beiden betreffenden Populationen (im Folgenden schlicht 

als Gruppe 1 und 2 bezeichnet) Personen, die einen entsprechenden Fragebogen ausfüllen. Anschließend 

untersucht er die erhobenen Daten mit SPSS und erhält die in Abbildung 5.16 gezeigte Ausgabe. 

Wie würden Sie diese Ergebnisse (in 2-3 Sätzen) für die Wahl eines Signifikanzniveaus von 𝛼 = .005 

berichten? Wie groß ist die Effektstärke gemäß Cohens Heuristik (1988)? 

 

Abbildung 5.16. Ausgabe für die Fragestellung aus Beispiel 5.12. 

Beispiel 5.13 

Eine Forscherin möchte wissen, ob die Konzentrationsfähigkeit von Schüler:innen mit ADHS durch 

eine bestimmte Intervention erhöht werden kann. Dazu erhebt sie die Konzentrationsfähigkeit von 73 

Schüler:innen mit ADHS vor und nach der Intervention. Anschließend untersucht sie die erhobenen 

Daten mit SPSS und erhält die in Abbildung 5.17 gezeigte Ausgabe. 
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Wie würden Sie diese Ergebnisse (in 2-3 Sätzen) für die Wahl eines Signifikanzniveaus von 𝛼 

= .04 berichten? Wie groß ist die Effektstärke gemäß Cohens Heuristik (1988)? 

 

Abbildung 5.17. Ausgabe für die Fragestellung aus Beispiel 5.13. 

Beispiel 5.14 

Ein Forscher möchte untersuchen, ob sich die wiederholte Beschäftigung mit Spielen, bei denen 

räumliche Rätsel gelöst werden müssen, auf die Fähigkeit der mentalen Rotation auswirkt. Für eine 

entsprechende Studie rekrutiert er daher 93 Schulkinder, die sich noch nie zuvor mit solchen Spielen 

befasst haben. Zu einem Zeitpunkt 1 erfasst er deren Fähigkeit zur mentalen Rotation auf einer Skala 

von 0 bis 100 mittels eines geeigneten Testverfahrens. Danach sollen sich die Kinder innerhalb von zwei 

Wochen insgesamt 4 Stunden mit dem Lösen räumlicher Rätselaufgaben befassen. Nach Ablauf der 

beiden Wochen, zu Zeitpunkt 2, wird wiederum die Fähigkeit zur mentalen Rotation erhoben. Die Daten 

zu diesem Experiment sind in der Datei Kap5UE14.sav zu finden. Ermitteln Sie mittels eines geeigneten 

statistischen Verfahrens, ob sich die Fähigkeit zur mentalen Rotation zwischen den beiden Zeitpunkten 

im Mittel unterscheidet und berichten Sie Ihre Resultate gemäß APA-Richtlinien. 
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Beispiel 5.15 

Eine Forscherin möchte untersuchen, ob textuelle Informationen in digitalen Lernspielumgebungen 

leichter verarbeitet werden können, wenn diese schriftlich dargestellt oder gesprochen werden. Um diese 

Fragestellung zu untersuchen, rekrutiert die Forscherin 172 Versuchspersonen und weist diese 

randomisiert entweder der Gruppe „Schrift“ oder der Gruppe „Sprache“ zu. In der Gruppe „Schrift“ 

werden lernspielrelevante Texte am Bildschirm schriftlich dargestellt. In der Gruppe „Sprache“ werden 

dieselben Informationen von einem professionellen Sprecher eingesprochen und dann durch 

entsprechende Sprachaufzeichnungen im Lernspiel vermittelt. Einen Tag, nachdem sich die 

Versuchspersonen mit dem Lernspiel befasst haben, absolvieren sie einen Test zu den Inhalten des 

Lernspiels, bei dem Sie zwischen 0 und 100 Punkte erreichen können. Die Testergebnisse und 

Gruppenzugehörigkeiten sind in der Datei Kap5UE15.sav zu finden. Ermitteln Sie mittels eines 

geeigneten statistischen Verfahrens, ob sich die beiden Gruppen hinsichtlich der Testergebnisse im 

Mittel unterscheiden und berichten Sie Ihre Resultate. 

Beispiel 5.16 

Forscher:innen haben eine Studie in einer großen Firma durchgeführt. Sie untersuchten die Coping-

Fähigkeiten der Angestellten dieser Firma, um herauszufinden, ob sich Personen mit und ohne Burnout 

hinsichtlich ihrer Coping-Fähigkeit unterscheiden und wie gestresst sich die Angestellten am 

Arbeitsplatz und in ihrem Privatleben fühlen. Untersuchen Sie anhand der Datendatei „Kap5UE16.sav“ 

die folgenden Fragestellungen mittels SPSS und berichten Sie die Ergebnisse Ihrer Berechnungen. 

Berichten Sie bei statistischen Ergebnissen immer alle relevanten Kennwerte (Mittelwerte und 

Standardabweichungen, Teststatistiken, Freiheitsgrade, p-Werte, Effektstärken). Das Signifikanzniveau 

soll für alle statistischen Tests zu 0.005 gewählten werden. 

(a) Unterscheiden sich Personen mit und ohne Burnout (Variable: burnout) hinsichtlich ihres 

mittleren Stressempfindens am Arbeitsplatz (Variable: stress_arbeit)? Falls ja, bei welchen 

Personen ist das Stressempfinden höher? 

(b) Unterscheidet sich das mittlere Ausmaß von Stress am Arbeitsplatz (Variable: stress_arbeit) 

von dem von Stress im Privatleben (Variable: stress_privat)? Falls ja, welcher Stress fällt 

höher aus? 
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Beispiel 5.17 

Ein neues Schmerzmedikament soll erprobt werden. Dazu werden unterschiedliche Experimente 

durchgeführt. In einem Experiment wird das Schmerzmedikament an 200 Personen mit einer 

chronischen Schmerzerkrankung ausgegeben. Für jede Person wird die Schmerzintensität vor der 

Einnahme des Medikaments auf einer kontinuierlichen Skala von 0 bis 10 erfasst. Im Anschluss werden 

die Personen gebeten das Medikament eine Woche wie empfohlen einzunehmen. Danach wird 

wiederum die Schmerzintensität erfasst. Die Daten sind in der Datei „Kap5UE17.sav“ gegeben. Wählen 

Sie ein geeignetes statistisches Verfahren, um die Frage zu erhellen, ob die Einnahme des Medikaments 

im Mittel die Schmerzen der Personen lindert. Erstellen Sie anschließend einen entsprechenden 

Ergebnisbericht. 

Beispiel 5.18 

Sauer macht bekanntlich lustig. Allerdings geht diese Redewendung auf das altdeutsche Wort „gelüstig“ 

zurück und bezieht sich eher auf die geschmacksverstärkende Wirkung von Säure als auf Spaß und 

Gelächter. 

Um die Redewendung im Zusammenhang mit dem Geschmack von Speisen zu untersuchen hat 

eine Forscherin daher 150 Versuchspersonen rekrutiert. Eine Hälfte der Personen bekam ein Glas 

Zitronensaft zu trinken, die andere Hälfte stattdessen Wasser. Danach wurde allen Personen dasselbe 

dreigängige Menü serviert, das schließlich von jeder Person auf einer kontinuierlichen Skala von 0 (= 

„schrecklich“) bis 10 (= „vorzüglich“) zu bewerten war. Die entsprechenden Daten sind in der Datei 

„Kap5UE18.sav“ zu finden. 

Wählen Sie ein geeignetes statistisches Verfahren, um die Frage zu erhellen, ob die Personen, 

die den Zitronensaft zu trinken bekamen, das Menü im Mittel besser bewerteten als die Personen, die 

stattdessen Wasser zu trinken bekamen. Erstellen Sie anschließend einen entsprechenden 

Ergebnisbericht. 
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Beispiel 5.19 

Eine Lehrerin möchte wissen, ob sich eine kurze Aktivierungsübung positiv auf die Lernmotivation im 

Mathematikunterricht auswirkt. Dazu erhebt sie die Lernmotivation ihrer Schüler:innen mit einem 

Kurzfragebogen während des Mathematikunterrichts jeweils vor und nach der Aktivierungsübung. 

Der Kurzfragebogen umfasst drei Items, die jeweils auf einer Skala von 1 (= „trifft gar nicht 

zu“) bis 4 („trifft voll und ganz zu“) beantwortet werden. Höhere Werte bedeuten höhere 

Lernmotivation. Aus diesen drei Items ist schließlich eine Mittelwertskala zu bilden, um die 

Lernmotivation zu erfassen. 

Die von der Lehrerin erhobenen Daten sind in der Datei „Kap5UE19.sav“ gegeben. Wählen Sie 

ein geeignetes statistisches Verfahren, um die Frage der Lehrerin zu erhellen, ob sich eine kurze 

Aktivierungsübung im Mittel positiv auf die Lernmotivation im Mathematikunterricht auswirkt. 

Erstellen Sie anschließend einen entsprechenden Ergebnisbericht. 

Beispiel 5.20 

Eine Therapeutin möchte wissen, ob sich eine kurze Atemübung positiv auf das allgemeine 

Entspannungsniveau von Klient:innen auswirkt. Dazu erhebt sie das allgemeine Entspannungsniveau 

von 60 ihrer Klient:innen mit einem Kurzfragebogen jeweils vor und nach der Atemübung. 

Die von der Therapeutin erhobenen Daten sind in der Datei „Kap5UE20.sav“ gegeben. Wählen 

Sie ein geeignetes statistisches Verfahren, um die Frage der Therapeutin zu erhellen, ob sich eine kurze 

Atemübung im Mittel positiv auf das allgemeine Entspannungsniveau auswirkt. Erstellen Sie 

anschließend einen entsprechenden Ergebnisbericht. 

Beispiel 5.21 

Wie viele Personen muss eine Gesamtstichprobe umfassen, damit bei Aufteilung in zwei gleich große 

Gruppen und einem Signifikanzniveau 𝛼 = .01 ein Unterschied zwischen beiden Gruppenmittelwerten 

(unabhängige Stichproben) der Stärke Cohens d = 0.5 mit einer Teststärke (= power) von 90% detektiert 

werden kann? Fügen Sie für Ihre Antwort auch einen Screenshot Ihrer Berechnung des 

Stichprobenumfangs mit G*Power ein. 
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Beispiel 5.22 

Wie viele Personen muss eine Gesamtstichprobe umfassen, damit bei Aufteilung in zwei gleich große 

Gruppen und einem Signifikanzniveau 𝛼 = .005 ein Unterschied zwischen beiden Gruppenmittelwerten 

(unabhängige Stichproben) der Stärke Cohens d = 0.4 mit einer Teststärke (= power) von 80% detektiert 

werden kann? Fügen Sie für Ihre Antwort auch einen Screenshot Ihrer Berechnung des 

Stichprobenumfangs mit G*Power ein. 

Beispiel 5.23 

Wie viele Personen muss eine Stichprobe umfassen, damit ein Unterschied zwischen zwei abhängigen 

Variablen der Stärke Cohens d = 0.2 für ein Signifikanzniveau 𝛼 = .005 mit einer Teststärke (= power) 

von 80% detektiert werden kann? Fügen Sie für Ihre Antwort auch einen Screenshot Ihrer Berechnung 

des Stichprobenumfangs mit G*Power ein. 

Beispiel 5.24 

Tun Sie sich für diese Übungsaufgabe mit einem:einer Kolleg:in zusammen. Erstellen Sie jeweils 

unabhängig voneinander jeweils drei Ergebnisberichte für drei beliebige aus den folgenden 

Übungsaufgaben: 5.4-5.6, 5.14-5.15, 5.17-5.20. Überprüfen Sie danach jeweils selbst die Korrektheit 

Ihrer Ergebnisberichte mit den am Ende dieses Dokuments bereitgestellten Lösungen. Fügen Sie 

anschließend in jeden Ihrer Ergebnisbericht 5 Fehler ein, ohne sie Ihrem:Ihrer Kolleg:in mitzuteilen 

(und es dürfen durchaus Fehler sein, die nur schwer zu entdecken sind). Tauschen Sie anschließend Ihre 

fehlerhaften Ergebnisberichte aus. Versuchen Sie nun jeweils die Fehler zu identifizieren und zu 

korrigieren, ohne dabei auf Musterlösungen zurückzugreifen. Für die korrekte Identifikation eines 

Fehlers gibt es einen Punkt, für die korrekte Korrektur eines Fehlers einen weiteren Punkt. D.h. Sie 

können beide jeweils maximal 30 Punkte erreichen. Wer mehr Punkte erreicht gewinnt! 

Beispiel 5.25 

Reflektieren Sie schriftlich: Welche Voraussetzungen müssen für einen t-Test für abhängige 

Stichproben erfüllt sein? Wie können Sie die Gültigkeit dieser Voraussetzungen prüfen? Welche 

Konsequenzen hat es, wenn die Voraussetzungen nicht erfüllt sind? 
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Kapitel 6 

Einfaktorielle Varianzanalyse ohne Messwiederholung 

Stefan E. Huber 

In den verbleibenden Kapiteln dieses Dokuments werden wir uns mit varianz- und regressions-

analytischen Verfahren befassen. In beiden Fällen wird die methodische Sichtweise auf die 

entsprechenden Fragestellungen etwas anders gelagert sein als für die statistischen Verfahren, die wir 

bisher behandelt haben (wobei es grundsätzlich möglich ist, auch die Vergleiche von zwei 

Gruppenmittelwerten sowie eines Mittelwerts unter die allgemeine Gruppe linearer Verfahren zu 

subsumieren). Konkret heißt dies, das für die verbleibenden Kapitel die folgende (experimentelle – bzw. 

quasi-experimentelle wie etwa in dem im nächsten Absatz beschriebenen Beispiel) Perspektive auf die 

Problemstellungen eingenommen wird: ein:e Forscher:in variiert eine unabhängige Variable (UV) und 

registriert Veränderungen in einer abhängigen Variable (AV). Bei der unabhängigen Variablen kann es 

sich um eine diskrete oder eine kontinuierliche Variable handeln. Für diskrete UVn ist es nach wie vor 

häufig üblich, deren Auswirkungen auf die entsprechende AV mit varianzanalytischen Modellen zu 

untersuchen (auch wenn diese einen Spezialfall regressionsanalytischer Modelle darstellen). Da die 

varianzanalytischen Modelle aber einen relativ einfachen Einstieg in allgemeinere statistische Modelle 

erlauben, wird dieser Spezialfall hier zuerst behandelt. In den Kapiteln 9-12 werden wir uns schließlich 

mit dem allgemeineren regressionsanalytischen Zugang befassen und am Ende (genauer: in Kapitel 12) 

auf regressionsanalytische Modelle mit diskreten UVn (auch Prädiktoren genannt) zurückkommen. 

Als Beispiel für dieses Kapitel werden wir die folgende Fragestellung betrachten: eine 

Forscherin erhebt das Merkmal Depression mit einem entsprechenden Fragebogen. Der Wert, die eine 

Person in diesem Fragebogen für das allgemeine Depressionsniveau erzielt, ist die Ausprägung der AV 

für diese Person. Die Forscherin erhebt das Depressionsniveau für drei unterschiedliche Gruppen: junge 

Erwachsene, Erwachsene mittleren Alters sowie ältere Erwachsene. D.h. die Forscherin zieht einfache 

Zufallsstichproben aus diesen mit entsprechenden Altersgrenzen begrenzten Populationen. Die 

jeweilige Altersgruppe entspricht also der UV, die die Forscherin dadurch systematisch variiert, indem 

sie systematisch aus diesen Zielgruppen einfache Zufallsstichproben zieht (sie variiert also nicht das 
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Alter systematisch, was schwer möglich wäre, sondern die Wahl der Altersgruppe). Ob das 

Depressionsniveau von der jeweiligen Altersgruppe abhängt, soll mithilfe der Gruppenmittelwerte 

beantwortet werden. Sind die Gruppenmittelwerte für das Depressionsniveau unterschiedlich, dann wird 

geschlossen, dass das Depressionsniveau von der Altersgruppe abhängt (d.h. nicht, dass ein 

Kausalzusammenhang zwischen den beiden Größen besteht, sondern nur, dass das typische 

Depressionsniveau eines älteren Erwachsenen typischerweise ein anderes ist als das eines jungen 

Erwachsenen). 

Alle anderen möglichen Merkmale, die eine Rolle für das Depressionsniveau spielen könnten, 

werden erstmal ausgeklammert. Das heißt, es wird lediglich eine UV untersucht. Die UVn in 

varianzanalytischen Modellen werden auch als Faktoren bezeichnet. D.h., es handelt sich hier um eine 

einfaktorielle Varianzanalyse, da es genau einen Faktor gibt. Da drei Altersgruppen untersucht werden, 

handelt es sich um einen Faktor mit drei Stufen. D.h., im vorliegenden Fall kann man auch von einer 

einfaktoriellen dreistufigen Varianzanalyse sprechen. Der eine Faktor ist die Altersgruppe. Dessen 

Stufen sind: junge Erwachsene (Stufe 1), mittelalte Erwachsene (Stufe 2), ältere Erwachsene (Stufe 3). 

Zum besseren Verständnis betrachten wir kurz noch einen zweiten Fall. Angenommen ein 

anderer Forscher würde die Auswirkung der Altersgruppe sowie vorliegender psychiatrischer 

Vorerkrankungen auf das Depressionsniveau untersuchen. Für die Altersgruppe würde er wieder 

dieselben Gruppen wie oben betrachten. Für das Vorliegen psychiatrischer Vorerkrankungen würde er 

zwischen „Person hat psychiatrische Vorerkrankungen“ und „Person hat keine psychiatrischen 

Vorerkrankungen“ unterscheiden. Die AV wäre in diesem Fall wieder das Depressionsniveau. 

Allerdings würden in diesem Fall nun zwei UVn bzw. Faktoren vorliegen, die Altersgruppe und das 

Vorliegen psychiatrischer Vorerkrankungen. Die Altersgruppe hätte wiederum drei Stufen. Das 

Vorliegen psychiatrischer Vorerkrankungen hätte zwei Stufen. In diesem Fall würde also eine 

zweifaktorielle Varianzanalyse mit einem 3 x 2 Design vorliegen. Die Angabe „3 x 2 Design“ bedeutet 

also, dass ein 3-stufiger und ein 2-stufiger Faktor vorliegt, insgesamt hat man es also mit 6 Populationen 

zu tun. Mit solchen mehrfaktoriellen Varianzanalysen werden wir uns im nächsten Kapitel befassen. 
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Schließlich gibt es noch Varianzanalysen mit Messwiederholung. Bei diesen wird das 

interessierende Merkmal beispielsweise zu mehreren Messzeitpunkten erhoben (es können prinzipiell 

aber auch andere als zeitliche Abhängigkeiten zwischen den entsprechenden Variablen bestehen). Das 

Kennzeichen von Varianzanalysen mit Messwiederholung ist also (häufig) das wiederholte Vorliegen 

eines interessierenden Merkmals für jede Person bzw. jeden Fall. In den vorhergehenden Fällen tauchte 

jede Person nur einmal mit einem bestimmten Depressionsniveau auf. In einer Varianzanalyse mit 

Messwiederholung würde in einem entsprechenden Beispiel das Depressionsniveau für eine Person öfter 

(etwa zu Beginn und nach Ende einer Therapie) auftauchen. Mit Varianzanalysen mit 

Messwiederholung werden wir uns in Kapitel 8 befassen. 

Schließlich kann ein Design einer Varianzanalyse balanciert oder unbalanciert sein. In einem 

balancierten Design ist der Umfang der Stichproben aus allen betreffenden Populationen gleich groß, in 

einem unbalancierten Design liegen unterschiedlich große Stichproben vor. 

Varianzanalytisches Modell für eine einfaktorielle Varianzanalyse ohne Messwiederholung 

Im varianzanalytischen Modell für eine einfaktorielle Varianzanalyse ohne Messwiederholung werden 

die Ausprägungen der AV für die einzelnen Personen in den unterschiedlichen Gruppen als 

Realisationen von identisch und unabhängig normalverteilten Zufallsvariablen aufgefasst. Diese 

Zufallsvariablen werden üblicherweise mit 𝑌 bezeichnet (anstatt wie für die bisherigen statistischen 

Verfahren mit 𝑋). Die zu diesen Zufallsvariablen gehörigen Normalverteilungen haben als 

Erwartungswert jeweils den einzelnen Gruppenmittelwert der AV, der um einen bestimmten Betrag Δ𝜇𝑗 

vom Gesamtmittelwert 𝜇 (über alle Gruppen) abweicht (das Symbol Δ wird als „delta“ ausgesprochen 

und zeigt den Unterschied zwischen zwei Werten an, hier zwischen dem Gesamt- und dem jeweiligen 

Gruppenmittelwert), und alle dieselbe Varianz 𝜎2, d.h. das statistische Modell lautet 

𝑌𝑖𝑗  ~ 𝑁(𝜇 + Δ𝜇𝑗, 𝜎2). 

In Worten bedeutet dies: Die AV der 𝑖-ten Person in Gruppe 𝑗 entspricht einer Zufallsvariable, die einer 

Normalverteilung mit Erwartungswert 𝜇 + Δ𝜇𝑗 und Varianz 𝜎2 folgt. Da dies für alle Gruppen und alle 

Personen gleichermaßen gilt, haben insbesondere alle Zufallsvariablen dieselbe Varianz, d.h., es liegt 

Homoskedastizität vor. Zudem sind alle Zufallsvariablen normalverteilt. Noch dazu macht es nur Sinn 
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mindestens intervallskalierte Variablen durch solche Zufallsvariablen zu modellieren. Schließlich gilt 

dies für alle Gruppen und Personen unabhängig voneinander (sonst müsste die Abhängigkeit ja 

irgendwie im statistischen Modell ausgewiesen werden). Zusammengenommen bedeutet das, dass alle 

auf diesem Modell basierenden Analysen nur dann hinsichtlich der Irrtumswahrscheinlichkeit 𝛼 

interpretierbare Ergebnisse liefern werden, wenn diese Modellannahmen für die entsprechende 

Fragestellung als gültig angenommen werden können (oder zumindest in guter Näherung als gültig 

angenommen werden können). Darauf werden wir unten im Rahmen der Voraussetzungsprüfungen für 

einfaktorielle Varianzanalysen ohne Messwiederholung noch zurückkommen. 

Für den Moment nehmen wir einmal an, alle diese Voraussetzungen seien erfüllt. Wie lässt sich 

dann prüfen, ob sich die Populationsmittelwerte der einzelnen Gruppen voneinander unterscheiden? Bis 

auf eine prinzipiell unhintergehbare statistische Unsicherheit (die wieder durch die Irrtumswahrschein-

lichkeit zum Ausdruck kommen wird), lässt sich diese Frage mit einem sog. Omnibustest für die 

Gleichheit aller Populationsmittelwerte, d.h. Δ𝜇𝑗 = 0 für alle 𝑗 = 1, … , 𝑚 mit 𝑚 der Anzahl der 

betrachteten Gruppen bzw. Populationen, prüfen. Diesen Omnibustest rekapitulieren wir kurz im 

nächsten Abschnitt. 

Omnibustest für ein einfaktorielles varianzanalytisches Modell 

Vorweg: Bei diesem Omnibustest handelt es sich um die einfaktorielle Varianzanalyse ohne 

Messwiederholung. Letzteres ist also der Name für das Verfahren, das dem Omnibustest für diesen Fall 

entspricht. Der englische Ausdruck für Varianzanalyse ist „analysis of variance“, was meist mit dem 

Akronym ANOVA abgekürzt wird. Falls Sie also von einer einfaktoriellen ANOVA lesen, ist auch 

damit eine einfaktorielle Varianzanalyse ohne Messwiederholung gemeint (eine Varianzanalyse mit 

Messwiederholung wird zusätzlich mit dem Ausdruck „repeated measures“ ANOVA als solche 

qualifiziert). 

Wie es der Begriff Varianzanalyse schon zum Ausdruck bringt, beruht dieses Verfahren auf der 

Analyse der Varianz. Gemeint ist damit die (unbekannte) Varianz der Zufallsvariablen des oben 

beschriebenen varianzanalytischen Modells. Bei Vorliegen eines entsprechenden Datensatzes kann 

diese grundsätzlich auf zwei Arten geschätzt werden. Eine der beiden Arten schätzt dabei immer die 



Kapitel 6: Einfaktorielle Varianzanalyse ohne Messwiederholung 

169 

unbekannte Varianz 𝜎2. Die andere Art schätzt diese Varianz nur, wenn die Nullhypothese der 

Gleichheit der Populationsmittelwerte auch tatsächlich gilt. Sonst überschätzt sie die Varianz (liefert 

also zu große Werte für sie). Durch Bildung des Verhältnisses aus diesen beiden Schätzungen kann dann 

abgeschätzt werden, wie plausibel das Zutreffen der Nullhypothese erscheint. 

Nehmen wir zur Illustration dieses Vorgehens an, dass wir die Ausprägungen einer AV für 

insgesamt 𝑚 Personengruppen vorliegen haben. Diese Personengruppen können grundsätzlich 

unterschiedliche Anzahlen an Personen beinhalten. Diese Anzahlen werden mit 𝑛1, 𝑛2, … , 𝑛𝑚 

bezeichnet, wobei 𝑛 = 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑚 = ∑ 𝑛𝑗
𝑚
𝑗=1  den Umfang aller Stichproben zusammen 

bezeichnet. 

Die erste Art, 𝜎2 zu schätzen, besteht nun darin, die Varianz von 𝑌𝑖𝑗 jeweils in den einzelnen 

Populationen durch Ermittlung der Varianz der entsprechenden Schätzwerte 𝑦𝑖𝑗 für jede der Stichproben 

zu schätzen und diese 𝑚 Schätzwerte zu einer sog. „gepoolten“ Schätzung der Varianz von 𝑌𝑖𝑗 zu 

kombinieren. Den Spezialfall einer gepoolten Varianzschätzung aus zwei Stichproben haben wir bereits 

im vorhergehenden Kapitel bei der Ermittlung des Standardfehlers für die mittlere Differenz zweier 

Populationsmittelwerte kennen gelernt. Für den allgemeinen Fall von 𝑚 Gruppen, kann die 

Schätzfunktion der gepoolten Varianz als 

𝑆𝑝𝑜𝑜𝑙
2 =

(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2 + ⋯ + (𝑛𝑚 − 1)𝑆𝑚
2

𝑛1 + 𝑛2 + ⋯ + 𝑛𝑚 − 𝑚
=

∑ (𝑛𝑗 − 1)𝑆𝑗
2𝑚

𝑗=1

𝑛 − 𝑚
 

mit Schätzwert 

𝑠𝑝𝑜𝑜𝑙
2 =

(𝑛1 − 1)𝑠1
2 + (𝑛2 − 1)𝑠2

2 + ⋯ + (𝑛𝑚 − 1)𝑠𝑚
2

𝑛1 + 𝑛2 + ⋯ + 𝑛𝑚 − 𝑚
=

∑ (𝑛𝑗 − 1)𝑠𝑗
2𝑚

𝑗=1

𝑛 − 𝑚
 

geschrieben werden, wobei hier 

𝑠𝑗
2 =

∑ (𝑦𝑖𝑗 − 𝑦̅𝑗)
2𝑛𝑗

𝑖=1

(𝑛𝑗 − 1)
 

den auf Basis der 𝑗-ten Stichprobe geschätzten Wert für die 𝑗-te Populationsvarianz darstellt. Da jedoch 

die Zufallsvariable in den 𝑚 Populationen gemäß der oben diskutierten Voraussetzungen jeweils 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

170 

dieselbe Varianz aufweisen sollte, sollten sich diese Schätzwerte nur aufgrund der zufälligen Ziehung 

von Zufallsvariablen zufällige Schwankungen unterscheiden und die gepoolte Varianz sollte insgesamt 

eine Schätzung von 𝜎2 erlauben. Theoretisch kann gezeigt werden, dass in der Tat 

𝐸(𝑆𝑝𝑜𝑜𝑙
2 ) = 𝜎2. 

Die zweite Art, 𝜎2 zu schätzen, sofern die Nullhypothese der Gleichheit der 

Populationsmittelwerte zutrifft, besteht nun darin die einzelnen Gruppenmittelwerte für die 𝑚 

Stichproben zur Schätzung von 𝜎2 heranzuziehen. Mathematisch lässt sich zeigen, dass, wenn eine 

Zufallsvariable normalverteilt mit Erwartungswert 𝜇 und Varianz 𝜎2 ist, der Mittelwert von 𝑛𝑗 solcher 

Zufallsvariablen wiederum eine normalverteilte Zufallsvariable mit Erwartungswert 𝜇 und Varianz 

𝜎2/𝑛𝑗 ist. D.h. im vorliegenden Fall handelt es sich bei den Gruppenmittelwerten 𝑌̅𝑗 unter Geltung der 

Nullhypothese jeweils um Zufallsvariablen mit Erwartungswert 𝜇 und Varianz 𝜎2/𝑛𝑗. Die um 𝜇 

verschobene Zufallsvariable (𝑌̅𝑗 − 𝜇) hat dann Erwartungswert Null und nach wie vor Varianz 𝜎2/𝑛𝑗. 

Multiplikation (Skalierung) mit 𝑛𝑗 führt also jeweils zurück auf eine Zufallsvariable mit Erwartungswert 

Null und Varianz 𝜎2. Die jeweilige Schätzung von 𝜇 durch 𝑌̅ =
1

𝑚
∑ 𝑌̅𝑗

𝑚
𝑗=1  sowie Division durch die 

Anzahl der Gruppen minus 1 (= 𝑚 − 1) führt dann wiederum zu einer erwartungstreuen Schätzfunktion 

für die unbekannte Varianz 𝜎2 (siehe Theorie zur erwartungstreuen Schätzung der Varianz einer 

normalverteilten Zufallsvariable, z.B. bei Bühner et al., 2025), d.h. 

𝑆2 =
∑ 𝑛𝑗(𝑌̅𝑗 − 𝑌̅)

2𝑚
𝑗=1

𝑚 − 1
, 

wobei hier 𝑌̅ =
∑ ∑ 𝑌𝑖𝑗

𝑛𝑗
𝑖=1

𝑚
𝑗=1

∑ 𝑛𝑗
𝑚
𝑗=1

=
1

𝑚
∑ 𝑌̅𝑗

𝑚
𝑗=1  für die Schätzfunktion des Gesamtmittelwerts gilt. Unter 

Geltung der Nullhypothese gilt wiederum, dass 

𝐸(𝑆2) = 𝜎2 

und dass damit 

𝑠2 =  
∑ 𝑛𝑗(𝑦̅𝑗 − 𝑦̅)

2𝑚
𝑗=1

𝑚 − 1
 

ebenfalls einem konkreten Schätzwert der unbekannten Populationsvarianz 𝜎2 entspricht. 
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Setzt man nun diese beiden Schätzwerte ins Verhältnis, d.h. bildet man den Quotienten 

𝑠2/𝑠𝑝𝑜𝑜𝑙
2 , so würde man unter Geltung der Nullhypothese einen Wert nahe 1 für dieses Verhältnis 

erwarten. Gilt die Nullhypothese allerdings nicht, so hängt die zweite Art der Schätzung von 𝜎2 

zusätzlich zu den zufälligen Schwankungen der Zufallsvariablen um ihren Erwartungswert auch noch 

vom realen Unterschied zwischen den jeweiligen Gruppenmittelwerten und dem Gesamtmittelwert ab. 

Theoretisch kann gezeigt werden, dass für den allgemeinen Fall Δ𝜇𝑗 ≠ 0 

𝐸(𝑆2) = 𝜎2 +
∑ 𝑛𝑗(Δ𝜇𝑗 − 𝜇)

2𝑚
𝑗=1

𝑚 − 1
, 

d.h. insbesondere, da der zweite Summand ≥ 0 sein muss, dass im Falle, dass die Nullhypothese nicht 

gilt, größere Werte für das Verhältnis 𝑠2/𝑠𝑝𝑜𝑜𝑙
2  erwartet werden können. Je größer also dieses Verhältnis, 

desto unplausibler die Nullhypothese. 

Insbesondere kann schließlich gezeigt werden, dass unter Geltung der Nullhypothese die 

Teststatistik 

𝐹 =

∑ 𝑛𝑗(𝑌̅𝑗 − 𝑌̅)
2𝑚

𝑗=1

𝑚 − 1
∑ (𝑛𝑗 − 1)𝑆𝑗

2𝑚
𝑗=1

𝑛 − 𝑚

 

einer sog. F-Verteilung mit den Freiheitsgraden 𝜈1 = 𝑚 − 1 und 𝜈2 = 𝑛 − 𝑚 folgt. Die Ausdrücke 

∑ 𝑛𝑗(𝑌̅𝑗 − 𝑌̅)
2𝑚

𝑗=1  und ∑ (𝑛𝑗 − 1)𝑆𝑗
2𝑚

𝑗=1  werden in der Theorie auch häufig als „Quadratsumme 

zwischen“ und „Quadratsumme innerhalb“ bezeichnet (Bühner et al., 2025), die Freiheitsgrade als 

Zähler- (𝜈1; da im Zähler des Ausdrucks für 𝐹) und als Nennerfreiheitsgrade (𝜈2; da im Nenner des 

Ausdrucks für 𝐹). Aus dem Verhältnis der beiden Quadratsummen (ohne Division durch den jeweiligen 

Freiheitsgrad) lässt sich eine Effektstärke für die einfaktorielle Varianzanalyse ermitteln (siehe unten). 

Die Realisation dieser Teststatistik in der konkreten Datensituation ist dann gegeben durch 

𝑓 =

∑ 𝑛𝑗(𝑦̅𝑗 − 𝑦̅)
2𝑚

𝑗=1

𝑚 − 1
∑ (𝑛𝑗 − 1)𝑠𝑗

2𝑚
𝑗=1

𝑛 − 𝑚

. 
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Für eine gegebene Datensituation kann dann jeweils die Realisation dieser Teststatistik 

berechnet werden sowie der p-Wert dafür unter Geltung der Nullhypothese eine so große oder extremere 

Teststatistik zu erhalten (durch Integration der F-Verteilung über den Bereich [𝑓, +∞)). Ergibt sich 

daraus ein p-Wert kleiner oder gleich dem vorab festgelegten Signifikanzniveau, kann wiederum 

geschlossen werden, dass ein solches Ergebnis unter Geltung der Nullhypothese bei wiederholter 

Ziehung einfacher Zufallsstichproben so selten wäre, dass es unplausibel erscheint, dass die 

Nullhypothese gilt und sie daher abgelehnt wird. 

Durchführung der einfaktoriellen Varianzanalyse mit SPSS 

Zur Illustration der Durchführung der einfaktoriellen Varianzanalyse mit SPSS sei wieder auf unser 

einleitendes Beispiel mit dem Depressionsniveau für die drei verschiedenen Altersgruppen junger 

Erwachsener, Erwachsener mittleren Alters und älterer Erwachsener zurückgegriffen. Ein 

entsprechender (wiederum fiktiver) Datensatz ist in der Datei „Kap6daten.sav“ zu finden, die Sie in dem 

elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument 

finden, das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Um nun eine einfaktorielle Varianzanalyse ohne Messwiederholung an diesem Datensatz zur 

Testung der Nullhypothese der Gleichheit aller drei Populationsmittelwerte (d.h. die 

Alternativhypothese lautet, dass sich mindestens zwei der drei Populationsmittelwerte unterscheiden) 

durchzuführen, wählen wir Analyze >> General Linear Model >> Univariate…. Im sich öffnenden 

Fenster ziehen wir unsere AV, d.h. die Variable Depressionsniveau, in das Feld „Dependent Variable“ 

und unsere UV, d.h. die Variable Altersgruppe, in das Feld „Fixed Factor(s)“, siehe Abbildung 6.1. 

Unter „Options…“ wählen wir noch „Descriptive statistics“, „Homogeneity tests“ und „Estimate of 

effect size“ sowie unser Signifikanzniveau aus (hier belassen wir es einfach einmal bei der 

Voreinstellung von .05), siehe Abbildung 6.2. Danach fügen wir alles wieder in eine Syntaxdatei ein, 

dokumentieren diese und führen die eingefügten Kommandozeilen aus. 

https://osf.io/9tcx3/
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Abbildung 6.1. Auswahl einer einfaktoriellen Varianzanalyse in SPSS. 

 

Abbildung 6.2. Auswahl der Optionen für eine einfaktorielle Varianzanalyse ohne Messwiederholung. 

Die Ausgabe besteht aus insgesamt vier Tabellen. Die erste der Tabellen mit Überschrift 

„Between-Subjects Factors“ führt die drei Stufen unseres Faktors mitsamt den entsprechenden Labels 

sowie der Anzahl der Personen pro Stufe auf. Hier sehen wir, dass es sich hier um ein balanciertes 

Design handelt, da in jeder Stufe bzw. Stichprobe 60 Personen vorliegen. An dieser Stelle sei darauf 
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hingewiesen, dass Faktoren, die zwischen unabhängigen Gruppen unterscheiden, auch als 

Zwischensubjektfaktoren (Engl.: Between-subjects factors) bezeichnet werden, da es sich bei den 

Personen in den verschiedenen Gruppen auch immer um verschiedene Personen handelt. Bei 

Varianzanalysen mit Messwiederholung werden wir sog. Innersubjektfaktoren (Engl.: Within-subjects 

factors) kennenlernen, da dort mehrere Messwerte derselben AV für ein und dieselbe Person vorliegen 

werden, d.h. die Stufen des Faktors liegen dort jeweils innerhalb (Engl.: within) ein und derselben 

Person. 

In der Tabelle „Descriptive Statistics“ finden wir deskriptive Statistiken sowohl getrennt für alle 

drei Stichproben als auch für die Gesamtstichprobe. Diese Werte werden wir im Ergebnisbericht 

brauchen (siehe unten). Allerdings werden sie dort noch dem APA-Format entsprechend anzupassen 

sein (z.B. Runden auf zwei Nachkommastellen). 

In der nächsten Tabelle finden wir Ergebnisse für Levenes Tests, die sich jeweils darin 

unterscheiden bezüglich welchen Referenzwerts die Varianzen in den verschiedenen Stichproben 

verglichen werden (Mittelwerte, Mediane, Mediane mit Freiheitsgradanpassung, getrimmte 

Mittelwerte). Da uns die Prüfung der Varianzgleichheit bezogen auf die einzelnen 

Populationsmittelwerte interessiert, schauen wir uns hier die erste Zeile an und sehen, dass der Levenes 

Test nicht signifikant ist, p = .405, siehe Abbildung 6.3. Da Varianzhomogenität (= Gleichheit der 

Varianzen oder auch Homoskedastizität) für Varianzanalysen eine sehr wichtige Voraussetzung ist, 

wählen wir für diese Überprüfung üblicherweise das Signifikanzniveau 𝛼 = .05. D.h. Levenes Test wäre 

signifikant für p < .05 (unabhängig und eventuell verschieden von unserem Signifikanzniveau für 

unseren eigentlichen Hypothesentest) und wäre dem so, würden wir anstelle der einfaktoriellen 

Varianzanalyse eine Varianzanalyse nach Welch durchführen, die ungleiche Populationsvarianzen 

berücksichtigen kann (eine Beschreibung der Durchführung einer solchen Varianzanalyse folgt unten). 

In diesem Fall ist aber Levenes Test nicht signifikant und wir können uns endlich den eigentlichen 

Ergebnissen der Varianzanalyse zuwenden. 



Kapitel 6: Einfaktorielle Varianzanalyse ohne Messwiederholung 

175 

 

Abbildung 6.3. Überprüfung der Varianzgleichheit. 

Diese finden wir in der Tabelle „Tests of Between-Subjects Effects“, die zur Illustration auch 

noch einmal in Abbildung 6.4 dargestellt ist. Die relevanten Zeilen bzw. Zellen dieser Ausgabe sind in 

Abbildung 6.4 rot markiert. In der Zeile „Altersgruppe“ sehen wir, dass unsere Varianzanalyse mit p = 

.005 bei einem Signifikanzniveau von 𝛼 = .05 signifikant ist (bei 𝛼 = .005 wäre dem nicht so; dazu 

müssten wir im SPSS Ausgabe auf die entsprechende Tabelle doppelt links klicken und dann im sich 

öffnenden Fenster noch einmal doppelt auf den p-Wert, um den exakten Wert angezeigt zu bekommen). 

Wir sehen auch den Schätzwert für unsere Teststatistik in der Spalte „F“ (da es sich unter Geltung der 

Nullhypothese um eine F-verteilte Teststatistik handelt) sowie die Zählerfreiheitsgrade 𝜈1 = 2 (= Anzahl 

der Gruppen minus 1, siehe oben) und die Nennerfreiheitsgrade 𝜈2 = 177 (= gesamter Stichprobenum-

fang minus Anzahl der Gruppen, siehe oben). All diese Werte werden wir im Ergebnisbericht brauchen. 

Was wir schließlich auch noch für den Ergebnisbericht und in späterer Folge für eine 

Stichprobenplanung (etwa eines Replikationsexperiments) brauchen werden, ist eine Effektstärke. Diese 

finden wir in der letzten Spalte mit der Überschrift „Partial Eta Squared“. In dieser lesen wir einen Wert 

für unsere Effektstärke 𝜂2 = 0.06 ab. Gemäß Theorie entspricht diese Effektstärke dem Verhältnis der 

Varianz in der AV, die durch die Gruppenzugehörigkeit aufgeklärt werden kann (= Quadratsumme 

zwischen), zu der Varianz in der AV insgesamt (= totale Quadratsumme; siehe z.B. Bühner et al., 2025). 

Diese beiden Varianzen sind durch die Quadratsummen in der Zeile „Altersgruppe“, d.h. 2209.544, und 

in der Zeile „Corrected Total“, d.h. 38340.061, gegeben. Man kann sich leicht überzeugen, dass Division 

dieser beiden Zahlen die entsprechende Zahl in der letzten Spalte ergibt. 
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Abbildung 6.4. Die Ergebnisse unserer ersten einfaktoriellen Varianzanalyse ohne Messwiederholung 

mit SPSS. 

Der Zusatz „partial“ in der letzten Spalte (für die Effektstärke) geht darauf zurück, dass im Falle 

mehrfaktorieller Varianzanalysen für jeden Faktor eine eigene Effektstärke berechnet werden kann, 

worauf wir im nächsten Kapitel zu sprechen kommen werden. Im Falle einer einfaktoriellen 

Varianzanalyse entspricht das partielle eta-Quadrat aber schlichtweg dem „gesamten“ eta-Quadrat, d.h. 

hier 𝜂𝑝
2 = 𝜂2. Für diese Ausgabe könnte die sich ergebende Effektstärke wie folgt interpretiert werden: 

„Der Schätzwert für den Anteil an der Gesamtvarianz des Depressionsniveaus in der Population, der 

durch Zugehörigkeit zu einer der drei Altersgruppen erklärt werden kann, beträgt 6%.“ 

Auch für die Effektstärke 𝜂2 gibt es Heuristiken nach Cohen (1988) dafür, wie groß diese 

Effektstärken einzuschätzen sind. Dementsprechend werden Effektstärken im Bereich 0.01-0.06 als 

klein, im Bereich 0.06-0.14 als mittel, und ab 0.14 als groß bezeichnet. 

Ergebnisbericht für eine einfaktorielle Varianzanalyse ohne Messwiederholung 

Ein Ergebnisbericht für dieses Beispiel könnte wie folgt aussehen: „Deskriptive Statistiken für die 

Depressionsschwere in den betrachteten drei Altersgruppen sind in Tabelle 6.1 angegeben. Die 

Mittelwerte der drei Altersgruppen unterscheiden sich (mit 𝛼 = .05) signifikant, F(2, 177) = 5.41, p = 

.005, 𝜂2 = .06, d.h. der Schätzwert für den Anteil an der Gesamtvarianz des Depressionsniveaus in der 

Population, der durch Zugehörigkeit zu einer der drei Altersgruppen erklärt werden kann, beträgt 6%. 

Gemäß Cohens Heuristik (1988) entspräche dies gerade einem mittleren Effekt für den auf zwei 
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Nachkommastellen gerundeten Schätzwert für 𝜂2. Bezieht man sich auf den numerisch genaueren Wert 

von 0.058 handelt es sich nach der Heuristik gerade noch um einen kleinen Effekt.“ 

Hier ist zu beachten, dass die führende Null bei der Effektstärke gemäß APA-Richtlinien 

wegzulassen ist, da es sich bei dieser Effektstärke um eine Zahl zwischen Null und Eins handelt. Auch 

das APA-Format der Tabelle für die deskriptiven Statistiken ist zu beachten. 

Tabelle 6.1 

Deskriptive Statistiken 

Altersgruppe M SD n 

Junge Erwachsene 26.38 15.37 60 

Erwachsene mittleren 

Alters 

31.30 13.58 60 

Ältere Erwachsene 34.93 13.86 60 

Stichprobenplanung für eine einfaktorielle Varianzanalyse ohne Messwiederholung 

Auch für diesen Fall kann wieder eine Stichprobenplanung mit G*Power durchgeführt werden. Dafür 

ist unter „Test family“ die Option „F tests“ auszuwählen, unter „Statistical test“ die Option „ANOVA: 

Fixed effects, omnibus, one-way“ und unter „Type of power analysis“ wiederum „A priori: Compute 

required sample size – given 𝛼, power, and effect size“. Unter „Input Parameters“ sind dann die 

gewünschten Werte für die Effektstärke, das Signifikanzniveau, die Teststärke sowie die Anzahl der 

Gruppen einzutragen. Bei der Effektstärke ist dabei zu beachten, dass G*Power hier die Effektstärke in 

Form der Größe 𝑓 benötigt (nicht zu verwechseln mit der Realisation der Teststatistik oben), die sich 

aus 𝜂2 wie folgt berechnen lässt: 

𝑓 = √
𝜂2

1 − 𝜂2
. 

Diese Berechnung kann allerdings gleich in G*Power durchgeführt werden, indem man auf die 

Schaltfläche „Determine =>“ klickt und im sich öffnenden Menü den gewünschten Wert für 𝜂2 unter 

„Partial 𝜂2“ eingibt (da für die einfaktorielle Varianzanalyse ohne Messwiederholung 𝜂2 = 𝜂𝑝
2 gilt). 
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Angenommen wir wollten ein Replikationsexperiment für das obige Beispiel durchführen und 

den Stichprobenumfang für 𝛼 = .005, eine Teststärke von 90% und die Effektstärke 𝜂2 = .06 ermitteln. 

Dann würden wir in G*Power die in Abbildung 6.5 gezeigten Eingaben tätigen und einen benötigten 

Stichprobenumfang von 𝑛 = 312, d.h. 104 Personen pro Gruppe, erhalten. 

 

Abbildung 6.5. Stichprobenplanung für eine einfaktorielle Varianzanalyse ohne Messwiederholung mit 

G*Power. 

Paarweise post-hoc Vergleiche 

Am oben gegebenen Ergebnisbericht können wir einen unangenehmen Aspekt der Durchführung des 

Omnibustests für Gleichheit aller Populationsmittelwerte erkennen. Zwar können wir die 

Unterschiedlichkeit der Populationsmittelwerte mit einer Irrtumswahrscheinlichkeit von 5% feststellen, 

aber wir können keine statistische Aussage darüber machen, welcher Populationsmittelwert sich von 

welchem anderen unterscheidet. Deskriptiv können wir zwar aus den Ergebnissen ablesen, dass der 
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Stichprobenmittelwert am größten für ältere Erwachsene ist, am zweitgrößten für Erwachsene mittleren 

Alters, und am kleinsten für junge Erwachsene. Aussagen über die statistische Signifikanz paarweiser 

Populationsmittelwertsunterschiede können wir allerdings auf Basis des Omnibustests alleine nicht 

treffen. Deshalb ist auch der Omnibustest alleine in der Praxis selten hilfreich (Bühner et al., 2025). 

Sollen deshalb im Anschluss an einen Omnibustest noch paarweise Mittelwertvergleiche 

gemacht werden, kann dies in SPSS im Rahmen sog. post-hoc Vergleiche angefordert werden. Sofern 

tatsächlich im Vorhinein keinerlei Hypothesen darüber bestanden wie sich die Populationsmittelwerte 

unterscheiden könnten, ist jedenfalls im Rahmen solcher post-hoc Vergleiche für multiple Vergleiche 

zu korrigieren, da dies der Testung einer zusammengesetzten Hypothese mit der Verknüpfung „oder“ 

entspricht (d.h., wir würden sagen, dass sich die Populationsmittelwerte voneinander unterscheiden, 

wenn mindestens einer der paarweisen Vergleiche einen signifikanten Unterschied ergibt). Alternativ 

könnte man allerdings von vornherein an allen drei paarweisen Unterschieden interessiert sein; dann 

wäre es allerdings unnötig vorab einen Omnibustest durchzuführen; man könnte stattdessen einfach die 

drei paarweisen Vergleiche (allerdings mit der gepoolten Standardabweichung, da dies die Teststärke 

erhöht) ohne Korrektur der p-Werte zur Kontrolle der FWER (= family-wise error rate), sondern 

stattdessen mit einem geringen 𝛼 = .005 und einer hohen Teststärke (etwa 80%) arbeiten, um die FDR 

(= false discovery rate) zu kontrollieren. Eine Angabe der Teststärke setzt aber gewisses Vorwissen 

voraus; d.h. sofern dieses nicht besteht (etwa aufgrund der Ergebnisse eines Explorationsexperiments), 

bleibt nur der Weg über die post-hoc Vergleiche. 

Für letztere ist im Menü „Post Hoc…“ zuerst die Variable Altersgruppe in das Feld „Post Hoc 

Tests for“ zu ziehen. In der Mitte links, unter „Equal Variances Assumed“ können eine Vielzahl von 

post-hoc Vergleichen mit entsprechenden Korrekturen für p-Werte ausgewählt werden. Hier wählen wir 

zu Illustrationszwecken gleich die folgenden drei aus: „LSD“, „Bonferroni“ und „Tukey“. Daraufhin 

fügen wir alles wieder in die Syntax ein und führen die Kommandozeilen aus. 

Zusätzlich zu den bereits bekannten Ergebnissen erhalten wir dadurch auch eine Tabelle mit der 

Überschrift „Multiple Comparisons“. In dieser Tabelle finden wir Vergleiche für alle möglichen Paare 

unserer drei Altersgruppen für jede ausgewählte Methode für die Korrektur der p-Werte. Für jeden 

paarweisen Vergleich ist die Punktschätzung der Mittelwertdifferenz aufgeführt, sowie deren Standard-
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fehler (basierend auf der gepoolten Varianz aller drei Gruppen, weshalb alle Standardfehler auch den 

gleichen Wert für alle Vergleiche haben), den p-Wert (in der Spalte „Sig“), und ein Konfidenzintervall 

mit den plausiblen Werten für den paarweisen Vergleich. 

Wir sehen, dass für alle drei Methoden jeweils der Unterschied zwischen jungen und älteren 

Erwachsenen (mit 𝛼 = .05) signifikant ist (p < .05), während alle anderen Vergleiche nicht signifikant 

sind. Wir sehen zudem auch wie sich die einzelnen Korrekturen auf die p-Werte auswirken. Bei der 

LSD-Methode (LSD steht für Fishers Least-Significant-Difference Test) wird außer der Verwendung 

der gepoolten Varianz zur Berechnung des Standardfehlers keine Korrektur der p-Werte an sich 

vorgenommen. Allerdings kontrolliert die Methode die FWER im Fall von genau drei Gruppen exakt 

(Meier, 2006; Marcus et al., 1976), weshalb es sich in diesem Fall um die Methode mit der höchsten 

Teststärke handelt. Die Bonferroni-Methode hingegen multipliziert jeden p-Wert mit dem Faktor 3, da 

hier drei paarweise Mittelwertvergleiche durchgeführt werden (man sieht dies z.B. gut am p-Wert für 

den Vergleich junger Erwachsener mit Erwachsenen mittleren Alters: für die LSD-Methode ergibt sich 

p = .061, was genau einem Drittel von p = .183 bei der Bonferroni-Methode entspricht). Diese Korrektur 

des p-Werts ist allerdings sehr konservativ, was auf Kosten der Teststärke geht. Dahingehend ist für jede 

Anzahl von Gruppen Tukeys HSD-Test (HSD für „honestly significant difference“) der Bonferroni-

Methode vorzuziehen. In Tukeys Methode werden die Abhängigkeiten der einzelnen paarweisen 

Vergleiche untereinander direkt berücksichtigt, was eine exaktere Korrektur der p-Werte und daher 

höhere Teststärke ermöglicht (man sieht das daran, dass die p-Werte in der Tabelle für die HSD-

Methode etwas geringer ausfallen als für die Bonferroni-Methode), ohne auf die Kontrolle der FWER 

zu verzichten. 

Zusammengefasst lässt sich also folgendes festhalten. Sollten genau drei Gruppen vorliegen, 

sollte für post-hoc Vergleiche die LSD-Methode gewählt werden, da sie bei exakter Kontrolle der 

FWER die höchste Teststärke aufweist. Für mehr als drei Gruppen sollte Tukeys HSD-Methode gewählt 

werden. Die Bonferroni-Methode sollte im Rahmen der einfaktoriellen Varianzanalyse ohne 

Messwiederholung nie gewählt werden. In den nächsten Kapiteln werden wir allerdings auf die 

Bonferroni-Methode zurückgreifen müssen. Die Durchführung von post-hoc Vergleichen ist natürlich 

auch für den Ergebnisbericht zu berücksichtigen, den wir uns im nächsten Abschnitt ansehen. 
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Ergebnisbericht für eine einfaktorielle Varianzanalyse ohne Messwiederholung mit paarweisen post-

hoc Vergleichen 

Ein Ergebnisbericht für dieses Beispiel unter Einbeziehung der Ergebnisse der post-hoc Vergleiche 

könnte wie folgt aussehen: 

„Deskriptive Statistiken für die Depressionsschwere in den betrachteten drei Altersgruppen sind 

in Tabelle 6.1 angegeben. Die Mittelwerte der drei Altersgruppen unterscheiden sich (mit 𝛼 = .05) 

signifikant, F(2, 177) = 5.41, p = .005, 𝜂2 = .06, d.h. der Schätzwert für den Anteil an der Gesamtvarianz 

des Depressionsniveaus in der Population, der durch Zugehörigkeit zu einer der drei Altersgruppen 

erklärt werden kann, beträgt 6%. Gemäß Cohens Heuristik (1988) entspricht dies einem mittleren Effekt. 

Paarweise Vergleiche mittels Fishers LSD-Test ergeben einen signifikanten Unterschied 

zwischen den Mittelwerten für junge Erwachsene und ältere Erwachsene, p = .001. Die verbleibenden 

beiden paarweisen Unterschiede sind nicht statistisch signifikant (p = .061 für den Vergleich zwischen 

jungen Erwachsenen und Erwachsenen mittleren Alters, p = .165 für den Vergleich zwischen älteren 

Erwachsenen und Erwachsenen mittleren Alters).“ 

Voraussetzungen für eine einfaktorielle Varianzanalyse ohne Messwiederholung 

Die Voraussetzungen für eine einfaktorielle Varianzanalyse ohne Messwiederholung wurden oben 

bereits erläutert und sind hier noch einmal zusammengefasst: 

• Normalverteilung der AV in den einzelnen Populationen, 

• Varianzgleichheit (auch als Varianzhomogenität bzw. Homoskedastizität bezeichnet), 

• Unabhängigkeit der Beobachtungen bzw. Messungen, 

• Intervallskalenniveau der AV. 

Die Normalverteilungsvoraussetzung kann wie im vorhergehenden Kapitel beschrieben überprüft 

werden. Allerdings erwies sich die Varianzanalyse gegenüber der Verletzung der Normalverteilungs-

voraussetzung in Simulationsstudien als relativ robust. Insbesondere bei balancierten Designs sind 

Signifikanzniveau und Teststärke kaum von dieser Voraussetzungsverletzung betroffen (Bühner & 

Ziegler, 2017; Bühner et al., 2025). 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

182 

Umso wichtiger ist allerdings im Rahmen von Varianzanalysen die Voraussetzung der 

Varianzgleichheit, insbesondere da darauf die Berücksichtigung aller Gruppen für die Schätzung der 

Varianz 𝜎2 durch die gepoolte Varianz 𝑆𝑝𝑜𝑜𝑙
2  beruht. Aus diesem Grund ist die Varianzanalyse noch 

empfindlicher auf die Verletzung dieser Voraussetzung als der t-Test im vorhergehenden Kapitel. Die 

Voraussetzung der Varianzhomogenität sollte daher grundsätzlich immer überprüft werden. 

Um die Varianzhomogenität statistisch zu prüfen, kann der Levene-Test wie oben beschrieben 

verwendet werden. Ist dieser signifikant (mit 𝛼 = .05) so kann von einer Verletzung der Voraussetzung 

ausgegangen werden und es sollte statt der einfaktoriellen Varianzanalyse eine Varianzanalyse nach 

Welch durchgeführt werden (siehe nächster Abschnitt). 

Die Unabhängigkeit der Messungen und das Intervallskalenniveau der AV wird durch das 

experimentelle Design festgelegt und kann im Rahmen der Datenanalyse als gegeben vorausgesetzt 

werden bzw. an dieser Stelle nicht mehr überprüft werden. 

Durchführung einer Varianzanalyse nach Welch 

Die Durchführung ist wiederum am Beispiel des Depressionsniveaus für die untersuchten drei 

Altersgruppen erklärt. Hier kann zwar von einer Verträglichkeit mit der Voraussetzung der 

Varianzgleichheit ausgegangen werden, aber das Beispiel dient einerseits lediglich zur Illustration des 

Vorgehens und andererseits sollte sich so auch zeigen, dass im Falle der Erfüllung der Vorrausetzung 

keine stark unterschiedlichen Ergebnisse zu erwarten sind. Um eine Varianzanalyse nach Welch in SPSS 

durchzuführen ist unter Analyze >> Compare Means and Proportions >> One-Way ANOVA… erst die 

Variable Depressionsniveau in das Feld „Dependent List“ und die Variable Altersgruppe in das Feld 

„Factor“ zu verschieben, siehe Abbildung 6.6. Unter „Options“ ist anschließend „Welch test“ 

auszuwählen. 

In der resultierenden Ausgabe, siehe Abbildung 6.7, ist in der Tabelle „ANOVA“ zuerst wieder 

das Ergebnis einer gewöhnlichen Varianzanalyse angeführt (zumindest die wesentlichen Ergebnisse) 

und in der Tabelle „ANOVA Effect Sizes“ unterschiedliche Maße für Effektstärken (inkl. der uns 

wohlbekannten Effektstärke 𝜂2 in der ersten Zeile) mit dem netten Zusatz eines 95%-

Konfidenzintervalls für die Effektstärken. 
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In der letzten Tabelle ist schließlich das Ergebnis der Varianzanalyse nach Welch mit dem Wert 

der Teststatistik, den beiden Freiheitsgraden und dem p-Wert, angeführt. In einem Ergebnisbericht 

könnte man dieses Ergebnis etwa wie folgt berichten: „Aufgrund der Verletzung der Voraussetzung der 

Varianzgleichheit (getestet mit Levenes Test, p < .05) wurde eine Varianzanalyse nach Welch 

durchgeführt. Die Varianzanalyse ergab, dass sich die Mittelwerte (mit 𝛼 = .05) signifikant voneinander 

unterscheiden, F(2, 117.68) = 5.10, p = .008.“ 

 

Abbildung 6.6. Auswahl einer Varianzanalyse nach Welch. 

A-priori Vergleiche 

Ein Omnibus-Test mit anschließenden post-hoc Vergleichen hat aufgrund der geringeren Teststärke 

wegen der nötigen Korrektur der p-Werte häufig den Nachteil reduzierter Teststärke. Bei vorab 

formulierten Hypothesen für spezifische Mittelwertsunterschiede ist es daher meist von Vorteil 

stattdessen sog. a-priori Vergleiche durchzuführen. Vorteile derselben sind (siehe z.B. Bühner et al., 

2025): 

• Typischerweise höhere Teststärke. 

• Das Ergebnis der statistischen Testung ist häufig informativer als ein Omnibus-Test. 

• Es können gerichtete Hypothesen formuliert werden. 

• Eine vorhergehende Durchführung eines Omnibus-Tests ist nicht notwendig. 
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Zudem ist es für eine Reihe spezifischer Vergleiche nicht notwendig eine Korrektur der p-Werte 

bezüglich der FWER durchzuführen (Bühner & Ziegler, 2017), allerdings ist eine Kontrolle der FDR 

durch ein geringes Signifikanzniveau und ausreichende Teststärke dennoch wünschenswert. Ent-

sprechende a-priori Vergleiche sind allerdings vor der Datenerhebung zu formulieren. 

Aufgrund dieser Vorteile soll die Durchführung von a-priori Vergleichen mit SPSS anhand des 

vorliegenden Datensatzes noch für die folgenden beiden Fragestellungen illustriert werden: 

(a) Uns interessiert, ob das mittlere Depressionsniveau bei jungen Erwachsenen niedriger 

als bei Erwachsenen mittleren Alters ist und genauso, ob das mittlere Depressions-

niveau bei Erwachsenen mittleren Alters niedriger ist als bei älteren Erwachsenen. 

(b) Um wie viel ist das mittlere Depressionsniveau bei jungen Erwachsenen niedriger als 

der Mittelwert des Depressionsniveaus von Erwachsenen mittleren Alters und älteren 

Erwachsenen. 

 

Abbildung 6.7. Ausgabe für die unter Analyze >> Compare Means and Proportions >> One-Way 

ANOVA… angeforderte Varianzanalyse inklusive der robusten Variante nach Welch. 
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Zu Illustrationszwecken wählen wir für beide Fragestellungen ein Signifikanzniveau 𝛼 = .05. 

Zur Beantwortung der ersten Fragestellung wählen wir unter Analyze >> Compare Means and 

Proportions >> One-Way ANOVA… das Menü „Contrasts…“. Dort geben wir im Feld „Coefficients“ 

die Zahl 1 ein und klicken anschließend auf „Add“. Danach geben wir die Zahl -1 ein und klicken wieder 

auf „Add“. Schließlich geben wir die Zahl 0 ein und klicken wieder auf „Add“. Dadurch haben wir den 

ersten Kontrast definiert: wir möchten die Differenz der Mittelwerte der ersten Stufe (junge Erwachsene) 

und der zweiten Stufe (Erwachsene mittleren Alters) unseres Faktors gegen Null testen, während der 

Mittelwert der dritten Stufe unberücksichtigt bleibt (das bedeuten hier die drei Zahlen in der Reihenfolge 

1, -1, 0). Für die Eingabe des zweiten Vergleichs klicken wir zunächst auf „Next“ und geben 

anschließend die Zahl 0, gefolgt von Klicken auf „Add“, dann die Zahl 1, gefolgt von Klicken auf „Add“, 

und schließlich die Zahl -1, gefolgt von Klicken auf „Add“, ein. Hier wollen wir also die Stufe 2 unseres 

Faktors (Erwachsene mittleren Alters) mit Stufe 3 (ältere Erwachsene) vergleichen. Haben wir beide a-

priori Vergleiche definiert, klicken wir auf „Continue“ und wählen unter „Options…“ noch die 

Varianzanalyse nach Welch ab, falls sie von vorhin noch ausgewählt war. Danach führen wir die 

entsprechenden Kommandozeilen wieder in der Syntax aus, nachdem wir sie dort eingefügt und 

dokumentiert haben. 

In den drei sich ergebenden Tabellen, siehe Abbildung 6.8, sind in der ersten Tabelle mit der 

Überschrift „Contrast Coefficients“ noch einmal die von uns definierten Vergleiche angeführt. Hier 

können wir also sehen, ob wir überhaupt die richtigen Vergleiche für unsere Fragestellung durchgeführt 

haben. In der zweiten Tabelle mit der Überschrift „Contrast Tests“ sind die t-Tests für die beiden 

paarweisen Vergleiche aufgeführt. Diese t-Tests schätzen aber den Standardfehler für den 

Mittelwertsunterschied auf Basis aller drei Gruppen, d.h. sie verfügen im Allgemeinen über höhere 

Teststärke als t-Tests, die nur die beiden zu vergleichenden Gruppen berücksichtigen würden. Zudem 

sind für beide paarweisen Vergleiche sowohl Student’sche als auch Welch t-Tests angegeben. 

Allerdings ist nur ein p-Wert für ungerichtete Hypothesen angegeben, der aber bei Vorliegen einer 

gerichteten Hypothese halbiert werden kann. Im vorliegenden Fall würden wir also für ein 𝛼 = .05 die 

Nullhypothese für die erste der beiden Hypothesen in Fragestellung (a) verwerfen (p = .033), aber für 

die zweite beibehalten (p = .075). 
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Abbildung 6.8. Ausgabe für a-priori Vergleiche für Fragestellung (a). 

Die Definition des Vergleichs im Menü „Contrasts…“ für Fragestellung (b) ist in Abbildung 

6.9 gezeigt. 

 

Abbildung 6.9. Vergleich einer Gruppe mit dem Mittelwert aus beiden anderen. 
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Die Ausgabe ist in Abbildung 6.10 gezeigt. Wir sehen, dass die plausiblen Werte gemäß des 

95%-KIs für den Mittelwertsunterschied zwischen der Population junger Erwachsener und den beiden 

Populationen älterer Erwachsener und Erwachsener mittleren Alters im Bereich [-11.38, -2.08] liegen. 

 

Abbildung 6.10. Ausgabe für Fragestellung (b). 

Ergebnisbericht für a-priori Kontraste 

Für Fragestellung (a) aus dem vorhergehenden Abschnitt könnte ein Ergebnisbericht so aussehen: „Des-

kriptive Statistiken für das Depressionsniveau in den betrachteten drei Altersgruppen sind in Tabelle 6.1 

angegeben. Das Depressionsniveau junger Erwachsener ist (mit 𝛼 = .05) signifikant niedriger als das 

von Erwachsenen mittleren Alters, t(116.24) = 1.86, p = .033, Cohens d = 0.34 mit 95%-KI [-0.02, 0.70]. 

Das Depressionsniveau von Erwachsenen mittleren Alters ist hingegen nicht signifikant niedriger als 

das von älteren Erwachsenen, t(117.95) = 1.45, p = .075, Cohens d = 0.25 mit 95%-KI [-0.11, 0.61]. 

Beide Unterschiede entsprechen gemäß Cohens Heuristik (1988) einem kleinen Effekt.“ 

Für Fragestellung (b) könnte ein Ergebnisbericht wie folgt aussehen: „Die plausiblen Werte 

gemäß des 95%-KIs für den Betrag, um den das mittlere Depressionsniveau junger Erwachsener 

niedriger ist als der Durchschnitt des mittleren Depressionsniveaus in den Altersgruppen der 

Erwachsenen mittleren Alters und der älteren Erwachsenen, liegen zwischen 2.08 und 11.38.“ 
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Übungsaufgaben 

Die Datendateien, die Sie für manche der folgenden Übungsaufgaben benötigen, finden Sie in dem 

elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument, 

das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Beispiel 6.1 

Was gehört zu den Voraussetzungen der einfaktoriellen Varianzanalyse ohne Messwiederholung? 

(a) Die UV muss mindestens intervallskaliert sein. 

(b) Die AV muss mindestens intervallskaliert sein. 

(c) Die Varianz der AV muss in allen Populationen dieselbe sein. 

(d) Die einzelnen Messungen müssen abhängig voneinander sein. 

Beispiel 6.2 

Was gehört zu den Voraussetzungen der einfaktoriellen Varianzanalyse ohne Messwiederholung? 

(a) Die AV muss in der Grundgesamtheit normalverteilt sein, kann aber in den einzelnen 

Populationen von einer Normalverteilung abweichen. 

(b) Die einzelnen Messungen müssen unabhängig voneinander sein. 

(c) Die Varianz der AV muss sich zwischen den Populationen unterscheiden. 

(d) Es muss Homoskedastizität vorliegen. 

Beispiel 6.3 

Was gehört zu den Vorteilen von a-priori Vergleichen (gegenüber post-hoc Vergleichen)? 

(a) Eine vorhergehende Durchführung eines Omnibus-Tests ist nicht notwendig. 

(b) Es können ungerichtete Hypothesen formuliert werden. 

(c) A-priori Vergleiche kontrollieren die FWER strenger. 

(d) Das Ergebnis der statistischen Testung ist häufig informativer als ein Omnibus-Test. 

  

https://osf.io/9tcx3/
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Beispiel 6.4 

Geben Sie für jede der folgenden Aussagen an, ob sie richtig oder falsch ist. 

Nr. Aussage R/F 

1) Gemäß Cohens Heuristik (1988) wird ein 𝜂2 = 0.4 als kleiner Effekt bezeichnet  

2) Eine Effektstärke für die einfaktorielle ANOVA heißt f und kann aus 𝜂2 berechnet 

werden. Diese Berechnung kann auch in G*Power durchgeführt werden. 

 

3) Fishers least-significant-difference (LSD) Test hat für den Fall einer einfaktoriellen 

Varianzanalyse ohne Messwiederholung für drei Gruppen eine höhere Teststärke 

als Tukeys honestly-significant-difference (HSD) Test und ist diesem daher 

vorzuziehen. 

 

4) Falls die Voraussetzung der Varianzhomogenität nicht erfüllt ist, kann anstelle einer 

einfaktoriellen Varianzanalyse ohne Messwiederholung eine Varianzanalyse nach 

Welch gerechnet werden. 

 

5) Die Voraussetzung der Normalverteilung der AV ist wichtiger als die 

Voraussetzung der Varianzgleichheit für einfaktorielle Varianzanalysen ohne 

Messwiederholung. 

 

6) Bei 𝜂2 zwischen 0.5 und 0.8 spricht man gemäß Cohens Heuristik (1988) von einem 

mittleren Effekt. 

 

 

Beispiel 6.5 

Eine einfaktorielle Varianzanalyse ohne Messwiederholung wird üblicherweise durchgeführt, um die 

Frage zu erhellen, ob sich mehrere Gruppenmittelwerte voneinander unterscheiden. D.h. insbesondere, 

dass es sich auch nur um zwei Gruppenmittelwerte handeln kann. Wiederholen Sie Übungsaufgabe 5.6, 

verwenden Sie aber dieses Mal eine Varianzanalyse, um zu ermitteln, ob Männer im Kurs „Anwendung 

statistischer Verfahren am Computer“ signifikant größer sind als Frauen. Verwenden Sie ein 

Signifikanzniveau von 𝛼 = .005 und berichten Sie Ihre Ergebnisse gemäß APA-Richtlinien. Sie finden 

die entsprechenden Daten in der Datei „Kap3daten.sav“. 
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Beispiel 6.6 

Eine Forscherin möchte untersuchen, ob textuelle Informationen in digitalen Lernspielumgebungen 

leichter verarbeitet werden können, wenn diese schriftlich dargestellt oder gesprochen werden. Um diese 

Fragestellung zu untersuchen, rekrutiert die Forscherin 172 Versuchspersonen und weist diese 

randomisiert entweder der Gruppe „Schrift“ oder der Gruppe „Sprache“ zu. In der Gruppe „Schrift“ 

werden lernspielrelevante Texte am Bildschirm schriftlich dargestellt. In der Gruppe „Sprache“ werden 

dieselben Informationen von einem professionellen Sprecher eingesprochen und dann durch 

entsprechende Sprachaufzeichnungen im Lernspiel vermittelt. Einen Tag, nachdem sich die 

Versuchspersonen mit dem Lernspiel befasst haben, absolvieren sie einen Test zu den Inhalten des 

Lernspiels, bei dem Sie zwischen 0 und 100 Punkte erreichen können. Die Testergebnisse und 

Gruppenzugehörigkeiten sind in der Datei Kap5UE15.sav zu finden. Ermitteln Sie mittels einer 

Varianzanalyse ohne Messwiederholung, ob sich die beiden Gruppen hinsichtlich der Testergebnisse im 

Mittel unterscheiden und berichten Sie Ihre Resultate gemäß APA-Richtlinien. 

Beispiel 6.7 

Verwenden Sie G*Power, um folgende Frage zu beantworten: Für wie viele Personen müssen bei 

gleicher Aufteilung auf drei Gruppen Daten erhoben werden, wenn mit einer Irrtumswahrscheinlichkeit 

von 0.5% und einer Teststärke von 80% ein gemäß Cohen (1988) kleiner Effekt von 𝜂2 = .01 detektiert 

werden soll? 

Beispiel 6.8 

Verwenden Sie die Datendatei „Kap3daten.sav“ für diese Aufgabe, um die folgende Frage zu 

beantworten. Gibt es Unterschiede in der Abneigung gegenüber Statistikprüfungen (erfasst durch die 

Variable statistikschmerzen) in Abhängigkeit vom bevorzugten Schulfach (Variable hauptfach)? Falls 

ja, führen Sie geeignete post-hoc Vergleiche durch, um diese Unterschiede genauer zu charakterisieren. 

Verwenden Sie ein Signifikanzniveau von 𝛼 = .05 für diese Aufgabe und korrigieren Sie p-Werte für 

Ihre post-hoc Vergleiche entsprechend. Berichten Sie Ihre Ergebnisse entsprechend APA-Richtlinien. 
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Beispiel 6.9 

Verwenden Sie wiederum die Datendatei aus der vorherigen Aufgabe, d.h. „Kap3daten.sav“. Prüfen Sie 

nun aber die folgenden beiden Hypothesen mit angemessen definierten a-priori Vergleichen: 

(a) Der Mittelwert für die Abneigung gegenüber Statistikprüfungen (wieder Variable 

statistikschmerzen) von Mathematik-affinen Studierenden (d.h. Studierenden mit 

Lieblingshauptfach Mathematik) ist niedriger als der Mittelwert für die Abneigung gegenüber 

Statistikprüfungen von Sprach-affinen Studierenden (d.h. Lieblingshauptfach entweder 

Englisch oder Deutsch). 

(b) Der Mittelwert für die Abneigung gegenüber Statistikprüfungen (wieder Variable 

statistikschmerzen) von Deutsch-affinen Studierenden (d.h. Studierenden mit 

Lieblingshauptfach Deutsch) ist niedriger als der Mittelwert für die Abneigung gegenüber 

Statistikprüfungen von Englisch-affinen Studierenden (d.h. Lieblingshauptfach Englisch). 

Formulieren Sie einen geeigneten Ergebnisbericht gemäß APA-Richtlinien. 

Beispiel 6.10 

Verwenden Sie für diese Übung die Datei „Sales.sav“. Der Datensatz enthält u.a. die Verkaufszahlen 

(in tausenden von Alben; Variable Sales), die Häufigkeit, mit der die entsprechende Musik im Radio 

gespielt wird (Variable Airplay), sowie die Attraktivität (Variable Attr_Group) von 200 verschiedenen 

Bands. Die Attraktivität ist dabei in den Kategorien 1 = „ugly“, 2 = „average“ und 3 = „beautiful“ 

gegeben. Bei dem Datensatz handelt es sich um eine adaptierte Version eines (fiktiven) Datensatzes, der 

von Andy Field für sein berüchtigtes Statistiklehrbuch „Discovering Statistics Using IBM SPSS 

Statistics“ (Field, 2024) erstellt wurde. Den Originaldatensatz finden Sie in der Datei „Album 

Sales.sav“, die Sie von der Webseite für Fields Buch https://edge.sagepub.com/field5e/student-

resources/datasets herunterladen können 

Versuchen Sie mit einem entsprechenden statistischen Verfahren die Frage zu beantworten, ob 

Bands unterschiedlicher Attraktivität unterschiedlich viele Alben verkaufen. Für den Fall, dass sich ein 

signifikanter Unterschied für die Mittelwerte der drei Kategorien ergibt, prüfen Sie alle paarweisen 

Vergleiche auf statistische Signifikanz mittels Fishers LSD-Test. 

https://edge.sagepub.com/field5e/student-resources/datasets
https://edge.sagepub.com/field5e/student-resources/datasets
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Fassen Sie Ihre Resultate in einem entsprechenden Ergebnisbericht gemäß APA-Richtlinien 

zusammen. 

Beispiel 6.11 

Wiederholen Sie die vorhergehende Übung 6.10, aber verwenden Sie dieses Mal sowohl den 

Bonferroni-Test sowie Tukeys HSD-Test im Rahmen der post-hoc Vergleiche. Vergleichen Sie die 

Resultate und erläutern Sie Unterschiede zu Fishers LSD-Test im vorhergehenden Beispiel. 

Beispiel 6.12 

Für die unten angegebene Fragestellung hat ein Freund, der Sie um Hilfe bei einer Statistikaufgabe bittet, 

bereits eine entsprechende Analyse in SPSS durchgeführt und einen Ergebnisbericht erstellt. Ihre 

Aufgabe besteht darin, die erhaltenen Ergebnisse zu überprüfen und gegebenenfalls zu korrigieren. 

Fragestellung: In einer Studie wurde überprüft, wie gut bestimmte Therapieformen bzw. 

Kontrollbedingungen zur Behandlung von bestimmten Essstörungen geeignet sind. Dazu wurde die über 

den Zeitraum der Therapie erzielte Gewichtszunahme (in kg) für 4 Therapieformen bzw. 

Kontrollbedingungen verglichen: Kognitive Verhaltenstherapie (KVT = Code 1), lösungsfokussierte 

Kurzzeittherapie (LKT = Code 2), sowie als Kontrollbedingungen ein sogenanntes treatment as usual 

(TAU = Code 3) und keine Behandlung (KB = Code 4). Die konkreten Fragestellungen lauteten: 

1) Führen die beiden Therapieformen zu einer größeren Gewichtszunahme als die beiden 

Kontrollbedingungen? 

2) Gibt es jeweils innerhalb der Therapieformen und innerhalb der Kontrollbedingungen 

Unterschiede in der erzielten Gewichtszunahme? 

Um diese Fragestellung zu untersuchen hat Ihr Freund eine einfaktorielle Varianzanalyse für 

unabhängige Stichproben durchgeführt, geeignete a-priori Vergleiche definiert und inferenzstatistisch 

untersucht. Als Signifikanzniveau wurde 𝛼 = .05 für jeden der Vergleiche gewählt. Im Anschluss 

erstellte er den unten folgenden Ergebnisbericht. 

Dieser Ergebnisbericht ist leider teilweise fehlerhaft. Markieren und korrigieren Sie die Fehler. 

Die Daten zur Aufgabe befinden sich in der Datei „Kap6UE12.sav“. 
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Ergebnisbericht: Die Stichprobe umfasste insgesamt 200 Personen. Der erste Kontrast verglich die 

beiden Therapien mit den beiden Kontrollbedingungen. Es zeigte sich, dass die beiden Therapien zu 

weniger Gewichtszunahme führten als die beiden Kontrollbedingungen (t(928.74) = 7.13, p < .001, d 

= 1.01; d.h. gemäß Cohen (1988) ein großer Effekt). Zwischen den beiden Therapieformen gab es 

keinen signifikanten Unterschied zwischen den mittleren Gewichtszunahmen für die KVT-Gruppe (M 

= 5.90, SD = 2.66) und die LKT-Gruppe (M = 4.52, SD = 3.05; t(96.19) = 2.40, p = .018, d = 0.47; d.h. 

gemäß Cohen (1988) ein großer Effekt). Auch innerhalb der Kontrollbedingungen fand sich ein 

signifikanter Unterschied zwischen den mittleren Gewichtszunahmen der TAU-Gruppe (M = 3.20, SD 

= 2.73) und der KB-Gruppe (M = 1.37, SD = 3.15; t(96.06) = 3.12, p = .020, d = 0.63; d.h., ein mittlerer 

Effekt gemäß Cohen(1988)). 

Beispiel 6.13 

Eine Forschungsgruppe untersucht die Wirksamkeit unterschiedlicher psychotherapeutischer Ansätze 

und vergleicht dafür Psychoanalyse, Verhaltenstherapie und eine Kontrollbedingung (tau = treatment as 

usual) bei einer bestimmten Form von Zwangsstörungen. Dazu werden 120 geeignete Versuchspersonen 

rekrutiert, die dann zufällig auf die drei Therapien aufgeteilt werden. Ein halbes Jahr nach 

Therapiebeginn wird bei jeder Person die Minderung der Zwangssymptomatik mit einem geeigneten 

psychometrischen Instrument auf einer Skala von -50 bis +50 erhoben. 

Verwenden Sie die in der Datei „Kap6UE13.sav“ gegebenen Daten, um mit einem geeigneten 

statistischen Verfahren die folgenden beiden Hypothesen zu prüfen: (a) Die beiden therapeutischen 

Ansätze wirken im Mittel besser (d.h. reduzieren die Symptomatik stärker) als die Kontrollbedingung; 

(b) die Verhaltenstherapie wirkt im Mittel besser als die Psychoanalyse. Verfassen Sie anschließend 

einen entsprechenden Ergebnisbericht. 
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Beispiel 6.14 

Eine Forschungsgruppe fragt sich, ob die Statistikangst von Studienanfänger:innen davon abhängt, 

welchen Schultyp diese besucht haben. Daher erhebt die Forschungsgruppe mit einem geeigneten 

psychometrischen Verfahren die Statistikangst von 225 Studienanfänger:innen und erhebt auch deren 

Schultyp. Die Schultypen werden in drei Kategorien eingeteilt: Schwerpunkt: Sprachen; Schwerpunkt: 

Naturwissenschaft und Technik; Schwerpunkt: Kunst & Design. 

Verwenden Sie die in der Datei „Kap6UE14.sav“ gegebenen Daten, um mit einem geeigneten 

statistischen Verfahren die folgende Hypothese zu prüfen: Die mittlere Statistikangst von 

Absolvent:innen von Schulen mit Schwerpunkt Naturwissenschaft und Technik ist niedriger als die 

mittlere Statistikangst von Absolvent:innen der beiden anderen Schultypen. Verfassen Sie anschließend 

einen entsprechenden Ergebnisbericht. 

Beispiel 6.15 

Eine Forschungsgruppe fragt sich, ob die Statistikangst von Studienanfänger:innen davon abhängt, 

welchen Schultyp diese besucht haben. Daher erhebt die Forschungsgruppe mit einem geeigneten 

psychometrischen Verfahren die Statistikangst von 300 Studienanfänger:innen und erhebt auch deren 

Schultyp. Die Schultypen werden in vier Kategorien eingeteilt: Schwerpunkt: Sprachen; Schwerpunkt: 

Naturwissenschaft und Technik; Schwerpunkt: Kunst & Design; Schwerpunkt: Sport. 

Verwenden Sie die in der Datei „Kap6UE15.sav“ gegebenen Daten, um mit einem geeigneten 

statistischen Verfahren die folgenden Hypothesen zu prüfen: (i) Die mittlere Statistikangst von 

Absolvent:innen von Schulen mit Schwerpunkt Naturwissenschaft und Technik ist niedriger als die 

mittlere Statistikangst von Absolvent:innen der Schultypen mit den Schwerpunkten Sprachen und Kunst 

& Design; (ii) die mittlere Statistikangst von Absolvent:innen von Schulen mit Schwerpunkt Sport 

unterscheidet sich von der mittleren Statistikangst von Absolvent:innen der Schultypen mit 

Schwerpunkten Sprachen und Kunst & Design. Verfassen Sie anschließend einen entsprechenden 

Ergebnisbericht. 
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Kapitel 7 

Zweifaktorielle Varianzanalyse ohne Messwiederholung 

Stefan E. Huber 

Als ob es nicht schon kompliziert genug wäre, sich mit der einfaktoriellen Varianzanalyse ohne 

Messwiederholung zu befassen, werden wir uns in diesem Kapitel nun auch noch mit der 

zweifaktoriellen Varianzanalyse ohne Messwiederholung beschäftigen. Allerdings haben wir dafür, was 

den konzeptuellen Hintergrund betrifft, im letzten Kapitel das Gröbste schon gut vorbereitet. Daher 

werden wir in diesem Kapitel die Darstellung der Grundkonzepte darauf beschränken, noch einmal zu 

rekapitulieren wie das Vorgehen der einfaktoriellen Varianzanalyse auf mehrere Faktoren, insbesondere 

zwei, erweitert werden kann. Für den Hauptteil des Kapitels werden wir anschließend den Schwerpunkt 

auf Durchführungsaspekte in SPSS legen. 

Zweifaktorielles varianzanalytisches Modell 

Das zweifaktorielle varianzanalytische Modell ist durch die folgende Gleichung gegeben: 

𝑌𝑖𝑗𝑘  ~ 𝑁(𝜇 + Δ𝜇𝑗 + Δ𝜇𝑘 + Δ𝜇𝑗𝑘 , 𝜎2), 

mit 𝑖 = 1, … , 𝑛, 𝑗 = 1, … , 𝑚 und 𝑘 = 1, … , 𝑞, wobei 𝑛 wieder dem Umfang der gesamten Stichprobe 

entspricht, 𝑚 der Anzahl der Stufen bzw. untersuchten Populationen des ersten Faktors, und 𝑞 der 

Anzahl der Stufen des zweiten Faktors. Hat z.B. der erste Faktor zwei Stufen und der zweite Faktor drei 

Stufen, so würden insgesamt 2x3 = 6 Populationen untersucht werden. Zur Erinnerung (vorhergehendes 

Kapitel): Man würde in diesem Fall also von einer zweifaktoriellen Varianzanalyse ohne 

Messwiederholung mit einem 2 x 3 Design sprechen. 

Aus der obigen Modellspezifikation geht ferner hervor, dass wiederum angenommen wird, dass 

die AV in jeder untersuchten Population durch eine identisch und unabhängig normalverteilte 

Zufallsvariable approximiert werden kann, mit eventuell je nach Stufe der beiden Faktoren 

unterschiedlichem Populationsmittelwert, aber jeweils derselben Varianz 𝜎2. D.h. insbesondere, dass 

die Messwerte in den jeweiligen Gruppen ausschließlich durch Populationsmittelwert und Varianz 

bestimmt sind, woraus die Bedingung folgt, dass zwischen den einzelnen Gruppen bzw. Populationen 
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keine Abhängigkeiten bestehen. Wenn also z.B. Messwerte für ein und dieselbe Person in mehreren der 

Populationen vorhanden wären, würde das diese Modellvoraussetzung verletzen. Dasselbe wäre der 

Fall, wenn z.B. in einer Gruppe die Messwerte jeweils aller Brüder und in einer anderen Gruppe die 

Messwerte jeweils aller Schwestern von Geschwisterpaaren vorliegen würden. Ein weiterer Fall, in dem 

das Modell nicht gültig wäre, wäre gegeben, wenn die Gruppen Messwerte zu ein und derselben Person 

zu verschiedenen Zeitpunkten enthalten würden. In all diesen Fällen würden abhängige (oder 

„verbundene“) Stichproben vorliegen und wir müssten mit einem varianzanalytischen Modell mit 

Messwiederholung arbeiten (siehe nächstes Kapitel). 

Die Voraussetzungen für das zweifaktorielle varianzanalytische Modell sind demgemäß alle 

durch das oben angegebene Modell spezifiziert. Im Einzelnen werden sie im nächsten Abschnitt noch 

einmal zusammengefasst und es wird kurz wiederholt wie sie jeweils in SPSS überprüft werden können. 

Voraussetzungen für das zweifaktorielle varianzanalytische Modell 

Die Voraussetzungen für das zweifaktorielle varianzanalytische Modell lauten wie folgt: 

• Intervallskalenniveau der AV. 

• Unabhängigkeit der Messungen bzw. Beobachtungen, d.h. insbesondere keine Abhängigkeiten 

zwischen den Gruppen. 

• Normalverteilung der AV in jeder Gruppe. 

• Gleichheit der Varianzen der AV in allen Gruppen (auch bekannt als Varianzhomogenität oder 

Homoskedastizität). 

Die ersten beiden dieser Voraussetzungen sind wiederum durch das experimentelle bzw. 

messtheoretische Design festgelegte und können im Rahmen der Datenanalyse nicht mehr überprüft 

werden. Die Normalverteilung in den unterschiedlichen Gruppen kann prinzipiell in SPSS über Analyze 

>> Descriptive Statistics >> Explore… überprüft werden, siehe Kapitel 5. Dafür ist es allerdings nötig, 

die Überprüfung für jede mögliche Kombination der Stufen beider Faktoren durchzuführen, was durch 

Aufteilung der Datendatei Data >> Split File… und dortiger Eingabe beider Faktorvariablen realisiert 

werden kann. Eine Anleitung dafür ist auch unter https://statistics.laerd.com/spss-tutorials/testing-for-

normality-using-spss-statistics-2.php zu finden. Wie schon bei der einfaktoriellen Varianzanalyse 

https://statistics.laerd.com/spss-tutorials/testing-for-normality-using-spss-statistics-2.php
https://statistics.laerd.com/spss-tutorials/testing-for-normality-using-spss-statistics-2.php
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erwähnt, ist die Varianzanalyse aber gegenüber der Verletzung der Normalverteilungsvoraussetzung 

relativ robust (zumindest, wenn nicht gleichzeitig Heteroskedastizität vorliegt). Kritischer ist hingegen 

die Prüfung auf Varianzgleichheit, welche wiederum im Rahmen der Durchführung der Varianzanalyse 

in SPSS angefordert werden kann (siehe unten). Sollte diese Voraussetzung verletzt sein, empfiehlt sich 

jedenfalls die Verwendung eines robusteren Verfahrens zur Hypothesenprüfung (siehe z.B. Mair & 

Wilcox, 2020). Darauf wird allerdings in diesen Übungen nicht weiter eingegangen. 

Omnibustests im zweifaktoriellen varianzanalytischen Modell 

Zur statistischen Testung von Unterschieden zwischen Populationsmittelwerten lassen sich für das 

zweifaktorielle varianzanalytische Modell drei verschiedene Omnibustests durchführen. Prinzipiell wird 

in jedem dieser Omnibustests wieder das Verhältnis zweier Varianzen gebildet, die unter Geltung der 

jeweiligen Nullhypothese wiederum beide Schätzungen der unbekannten Varianz 𝜎2 darstellen. D.h. 

unter Geltung der Nullhypothese ergibt sich ein Verhältnis der beiden Varianzschätzungen nahe 1. 

Insbesondere ist dieses Verhältnis unter Geltung der Nullhypothese wieder F-verteilt (wobei sich die 

beiden Freiheitsgrade wieder aus der Stichprobengröße und den Anzahlen der untersuchten Gruppen 

bzw. Faktorstufen ergeben), woraus wiederum folgt, dass es nur selten den Wert 1 sehr weit übersteigt 

(und nach unten mit Null begrenzt ist). Ergibt sich also ein Testwert, der sehr weit (nach oben) vom 

unter der Nullhypothese erwarteten Wert von 1 abweicht, kann die Nullhypothese aufgrund der üblichen 

Argumentation als unplausibel abgelehnt werden. Als Entscheidungskriterium kann dafür auch wieder 

ein p-Wert berechnet und mit einem vorab gewählten Signifikanzniveau verglichen werden. All das 

erledigt netterweise SPSS für uns und, was die Durchführung anbelangt, müssen wir lediglich wissen, 

wie wir eine entsprechende Analyse ausführen und wo wir die einzelnen Informationen, die wir zur 

Entscheidungsfindung benötigen, finden können. 

Bevor wir uns diesem Vorgehen zuwenden, rekapitulieren wir aber noch einmal, um welche 

drei Hypothesentests es sich bei diesen Omnibustests denn nun spezifisch handelt. Der erste dieser 

Hypothesentests testet die Nullhypothese 𝐻0: Δ𝜇𝑗 = 0 ∀ 𝑗 = 1, … , 𝑚 wobei das Symbol „∀“ als „für 

alle“ zu lesen ist. Die entsprechende Alternativhypothese lautet 𝐻1: ∃𝑗: Δ𝜇𝑗 ≠ 0 wobei hier „∃“ als „es 

gibt“ zu lesen ist. Die Alternativhypothese bedeutet, dass es mindestens einen Unterschied zwischen 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

198 

den Populationsmittelwerten für die Faktorstufen 𝑗 des ersten Faktors gibt, während die Nullhypothese 

bedeutet, dass es keinen solchen Unterschied gibt. Wird die Nullhypothese verworfen, sagt man auch, 

dass ein Haupteffekt für den ersten Faktor vorliegt. Die Freiheitsgrade für die F-Verteilung sind für 

dieses Hypothesenpaar zu 𝜈1 = 𝑚 − 1 und 𝜈2 = 𝑛 − 𝑚 − 𝑞 gegeben. 

Der zweite dieser Hypothesentests testet analog die Nullhypothese 𝐻0: Δ𝜇𝑘 = 0 ∀ 𝑘 = 1, … , 𝑞. 

Die entsprechende Alternativhypothese lautet 𝐻1: ∃𝑘: Δ𝜇𝑘 ≠ 0. Die Alternativhypothese bedeutet, dass 

es mindestens einen Unterschied zwischen den Populationsmittelwerten für die Faktorstufen 𝑘 des 

zweiten Faktors gibt, während die Nullhypothese bedeutet, dass es keinen solchen Unterschied gibt. 

Wird die Nullhypothese verworfen, sagt man auch, dass ein Haupteffekt für den zweiten Faktor vorliegt. 

Die Freiheitsgrade für die F-Verteilung sind für dieses Hypothesenpaar zu 𝜈1 = 𝑞 − 1 und 𝜈2 = 𝑛 −

𝑚 − 𝑞 gegeben. 

Sobald es sich um ein mindestens zweifaktorielles Untersuchungsdesign handelt, sind auch 

sogenannte Interaktionseffekte zu berücksichtigen. Bei einer Interaktion handelt es sich schlichtweg um 

den Fall, dass die Auswirkung eines Faktors auf die AV von der Ausprägung des anderen Faktors 

abhängt. Ein prägnantes Beispiel für eine Interaktion findet sich bei Oswald Huber (2019, S. 160, 

Hervorhebungen im Original): „Wenn beispielsweise ein Fremder in das persönliche Territorium eines 

Menschen eindringt (z.B. in dessen persönliches Büro), dann hängt die Reaktion dieses Menschen meist 

vom Verhalten des Eindringlings ab: Klopft der Eindringling vor dem Öffnen der Türe an, fragt er, ob 

er eintreten darf, grüßt er höflich, dann wird der Territoriumsinhaber in der Regel nicht unfreundlich 

reagieren. Tut der Eindringling all das nicht, muss er mit einem unfreundlichen Empfang rechnen. In 

diesem Fall wirken die beiden Variablen Eindringen in fremdes Territorium und Beschwichtigendes 

Verhalten des Eindringlings nicht unabhängig voneinander, sondern sie interagieren. Welche Wirkung 

eintritt, hängt von beiden Variablen gemeinsam ab.“ 

Der Omnibustest für die Interaktion testet die Nullhypothese 𝐻0: Δ𝜇𝑗𝑘 = 0 ∀ 𝑗 = 1, … , 𝑚 ∧

∀ 𝑘 = 1, … , 𝑞, wobei hier „∧“ die logische Operation UND bezeichnet. Die entsprechende 

Alternativhypothese lautet 𝐻1: ∃ (𝑗, 𝑘):  Δ𝜇𝑗𝑘 ≠ 0. Inhaltlich bedeutet das Vorliegen einer Interaktion, 

dass ein einzelner Populationsmittelwert sich nicht additiv aus den Haupteffekten der beiden Faktoren 
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und dem Gesamtmittelwert zusammensetzt. Dies geht damit einher, dass eine Interaktion (oder auch 

Wechselwirkung genannt) dann vorliegt, wenn der Einfluss eines Faktors auf die AV sich über die 

Stufen des jeweils anderen Faktors hinweg unterscheidet. Die Freiheitsgrade für die F-Verteilung sind 

für die Testung der Interaktion zu 𝜈1 = (𝑚 − 1)(𝑞 − 1) und 𝜈2 = 𝑛 − 𝑚 − 𝑞 gegeben. 

Liegt eine Interaktion vor, kann man die Einflüsse der beiden Faktoren im Allgemeinen nicht 

getrennt voneinander betrachten. So kann es z.B. sein, dass kein Haupteffekt eines Faktors vorliegt, man 

aber nicht sagen kann, dass dieser keinen Einfluss auf die AV hat, siehe Abbildung 7.1 links. Genauso 

kann es sein, dass ein Haupteffekt eines Faktors auf die AV vorliegt, dieser aber nicht für jede 

Faktorstufe des anderen Faktors einen Einfluss auf die AV hat, siehe Abbildung 7.1 rechts. Weitere 

solcher Fälle werden im Folgenden noch an praktischen Beispielen illustriert. 

 

Abbildung 7.1. Illustrationen, weshalb Haupteffekte im Allgemeinen nicht mehr zu interpretieren sind, 

wenn eine Interaktion vorliegt. 
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Zweifaktorielle Varianzanalyse ohne Messwiederholung mit 2x2 Design in SPSS 

Die Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung mit einem 2x2 

Design wird an dem Datensatz in der Datendatei „Kraft.sav“ illustriert, die Sie in dem elektronischen 

Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument finden, das Sie 

unter https://osf.io/9tcx3/ herunterladen können. 

Gegeben sind in diesem Datensatz Messungen der Körperkraft auf einer Skala von 0-100 für 

109 männliche und weibliche Versuchspersonen aus zwei Altersgruppen (unter 50 und über 50). Die 

Fragestellung, für die diese (fiktiven) Daten (genauso fiktiv) erhoben wurden, lautete: Wie wirken sich 

Alter und Geschlecht auf die Körperkraft aus? 

Um diese Fragestellung zu beantworten, wird eine zweifaktorielle Varianzanalyse ohne 

Messwiederholung mit den beiden Faktoren Geschlecht und Altersgruppe durchgeführt. Beide Faktoren 

haben jeweils 2 Stufen. Zur Durchführung in SPSS wählen wir zuerst Analyze >> General Linear Model 

>> Univariate… und ziehen anschließend die Variable Kraft in das Feld „Dependent Variable“ und die 

Variablen Geschlecht und Alter_Gruppe in das Feld „Fixed Factor(s)“, siehe Abbildung 7.2. 

 

Abbildung 7.2. Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung mit SPSS. 

Anschließend öffnen wir das Menü „Plots…“ und ziehen dort die Variable Geschlecht in das 

Feld „Horizontal Axis“ und die Variable Alter_Gruppe in das Feld „Separate Lines“. Genauso könnten 

wir auch die Variable Geschlecht in das Feld „Separate Lines“ und die Variable Alter_Gruppe in das 

Feld „Horizontal Axis“ ziehen. Beide Darstellungsformen sind völlig äquivalent. Bei komplexeren 

https://osf.io/9tcx3/
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Designs (mit mehr Stufen) ist aber manchmal eine der beiden Formen einleuchtender, weshalb es 

oftmals bequem ist, sich einfach beide ausgeben zu lassen und dann hinterher herauszufinden, welche 

einfacher zu interpretieren ist. Zu Illustrationszwecken machen wir das auch in diesem Beispiel so (auch 

wenn es hier keinerlei Vorteile bringt). Zusätzlich wählen wir noch aus, dass uns 95%-KI für die 

Mittelwerte angezeigt werden sollen, siehe Abbildung 7.3. Danach klicken wir auf „Continue“. 

 

Abbildung 7.3. Ein Bild sagt oft mehr als tausend Worte. 

Danach gehen wir noch ins Menü „Options…“ um hier jedenfalls „Descriptive statistics“, 

„Homogeneity tests“ und „Estimates of effect size “ anzufordern, siehe Abbildung 7.4. Danach klicken 

wir wieder auf „Continue“, dann auf „Paste“, dokumentieren die sich öffnende Syntaxdatei entsprechend 

und führen schließlich die gerade eingefügten Kommandozeilen aus. Das generiert eine relative 

umfangreiche Ausgabe, die wir im Folgenden Schritt für Schritt bzw. Tabelle für Tabelle besprechen. 

Die Ausgabe ist hier nicht (vollständig) wiedergegeben. Das heißt, um die folgende Beschreibung 

nachvollziehen zu können, wird empfohlen die Analyse erst in SPSS auszuführen, um die 

entsprechenden Tabellen einsehen zu können. 
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Abbildung 7.4. Optionen für unsere zweifaktorielle Varianzanalyse ohne Messwiederholung. 

In der Tabelle „Between-Subjects Factors“ finden wir eine Übersicht zu den Stichproben-

umfängen für die Stufen unserer beiden Faktoren. Wir sehen, dass wir Daten für 60 Männer und 49 

Frauen vorliegen haben. Ferner sehen wir, dass insgesamt 52 Personen unter 50 Jahre alt waren, und 57 

älter. 

In der nächsten Tabelle mit der Überschrift „Descriptive Statistics“ sehen wir, wie sich diese 

Versuchspersonen genau in die 2x2 = 4 Stichproben aufteilen (letzte Spalte). Zudem sind wieder 

Mittelwerte und Standardabweichungen für jede Untergruppe, aber auch für alle übergeordneten 

Gruppen angegeben. 

In der Tabelle „Levene’s Test of Equality of Error Variances“ finden wir wieder Ergebnisse für 

unterschiedliche Levenes Tests. Da wir uns wieder für Mittelwertsunterschiede interessieren, ist für uns 

hier besonders die erste Zeile „Based on Mean“ interessant. Dort sehen wir in der Spalte „Sig.“ den p-

wert für den Levenes Test, an dem wir erkennen, dass dieser nicht signifikant ist (d.h. > .05), p = .256. 

Wir entscheiden daher von Varianzhomogenität auszugehen. 
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In der Tabelle „Tests of Between-Subjects Effects“, siehe auch Abbildung 7.5, bekommen wir 

schließlich die Resultate unserer eigentlichen Varianzanalyse. In der Zeile „Geschlecht“ können wir die 

Freiheitsgrade 𝜈1 = 1 in der Spalte „df“, den F-Wert 36.03, den p-Wert < .001, sowie die Effektstärke 

𝜂𝑝
2 = .26 für unsere Variable Geschlecht ablesen. Es liegt also ein signifikanter Haupteffekt für die 

Variable Geschlecht vor. Bei der Effektstärke handelt es sich um das sogenannte partielle Eta-Quadrat. 

Jeder Faktor (sowie die Interaktion) kann einen gewissen Anteil der Varianz in der AV aufklären, 

während der restliche Teil unerklärt bleibt. Das partielle eta-Quadrat entspricht dem Verhältnis des 

Anteils, der durch den betrachteten Faktor erklärt wird, und diesem Anteil zusammen mit dem 

unerklärten Varianzanteil. Das partielle eta-Quadrat bemisst also wie groß der durch den Faktor erklärte 

Anteil relativ zum unerklärten Anteil der Varianz der AV ist. Daneben gibt es auch das eta-Quadrat 

(ohne „partiell“), das schlichtweg den Anteil der Gesamtvarianz der AV angibt, der durch den 

betrachteten Faktor erklärt werden kann. Dieses könnten wir uns selbst aus den Quadratsummen in der 

Spalte „Type III Sum of Squares“ berechnen. Beide Effektstärken sind in der Literatur immer wieder 

anzutreffen. Für diese Übungen beschränken wir uns allerdings auf das partielle eta-Quadrat. Auch für 

dieses existieren wieder Heuristiken nach Cohen (1988). Wie schon im vorhergehenden Kapitel für 𝜂2 

im Rahmen einfaktorieller Varianzanalysen werden auch für 𝜂𝑝
2 Werte zwischen 0.01 und 0.06 als klein, 

Werte zwischen 0.06 und 0.14 als mittel, und Werte ab 0.14 als groß bezeichnet. 

In der Zeile „Alter_Gruppe“ finden wir die entsprechenden Ergebnisse für unsere Variable 

Alter_Gruppe. Auch hier ist 𝜈1 = 1, der F-Wert entspricht 31.70, der p-Wert ist kleiner als 0.001 und 

damit auch signifikant, die Effektstärke ist mit 𝜂𝑝
2 = .23 vergleichbar groß zum Faktor Geschlecht. Auch 

für diesen Faktor liegt also ein signifikanter Haupteffekt vor. 

In der Zeile „Geschlecht*Alter_Gruppe“ finden wir schließlich unsere Ergebnisse zur 

Interaktion. Auch für diese ist 𝜈1 = 1 (da (𝑚 − 1)(𝑞 − 1) = (2 − 1)(2 − 1) = 1 ∙ 1 = 1), der F-Wert 

ist allerdings mit 0.39 sehr klein, der p-wert mit 0.54 entsprechend nicht signifikant, die Effektstärke 

vernachlässigbar (Effektstärken unterhalb der Kategorie „klein“ werden in der Literatur häufig als 

vernachlässigbar bezeichnet). 

In der Zeile „Error“ finden wir schließlich noch den Wert für die Freiheitsgrade 𝜈2 = 105. 
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Abbildung 7.5. Wesentlicher Teil der Ausgabe für unsere zweifaktorielle Varianzanalyse. 

In Abbildung 7.6 sehen wir auch sehr schön, was es bedeutet, wenn lediglich zwei Haupteffekte 

aber keine Interaktion vorliegt. Jüngere Versuchspersonen sind stärker als ältere, männliche sind stärker 

als weibliche. Beides gilt jeweils unabhängig vom anderen Faktor, weshalb auch die beiden Linien in 

Abbildung 7.6 nahezu parallel zueinander sind. 

 

Abbildung 7.6. Grafischer Vergleich der Mittelwerte unserer vier Stichproben. Fehlerbalken 

entsprechen 95%-KI. 
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Aus diesem Grund (keine Interaktion, lediglich Haupteffekte) werden häufig in Ergebnis-

berichten schlichtweg die Verhältnisse der in Abbildung 7.6 gezeigten Randmittel berichtet, wobei aber 

die Angabe der Stichprobenmittelwert für alle vier Stichproben zumindest in Form einer entsprechenden 

Tabelle dennoch empfohlen wird. Schließlich geben die Randmittel (d.h. lediglich der Vergleich der 

Kraft zwischen Männern und Frauen bzw. zwischen Jüngeren und Älteren) keinen Einblick in die 

Verhältnisse, die zwischen je zwei der 2x2=4 spezifischen Populationen bestehen. Spezifische 

Einzelvergleiche dieser Untergruppen sind in SPSS im Rahmen von post-hoc Vergleichen im Nachgang 

zu den drei soeben besprochenen Omnibustests möglich. Damit werden wir uns im nächsten Beispiel 

näher befassen. Davor schauen wir uns allerdings noch ein Beispiel für einen möglichen Ergebnisbericht 

für die soeben erläuterten Ergebnisse an. 

Ergebnisbericht 

Ein Ergebnisbericht für dieses Beispiel könnte wie folgt aussehen: „Sowohl das Alter (F(1,105) = 31.70, 

p < .001, ηp
2 = .23) als auch das Geschlecht (F(1,105) = 36.03, p < .001, ηp

2  = .26) haben (mit 𝛼 = .005) 

einen signifikanten Einfluss auf das Ausmaß an Körperkraft. Zwischen Alter und Geschlecht besteht 

keine signifikante Wechselwirkung (F(1,105) = 0.39, p = .535, ηp
2  < .01). Personen jünger als 50 Jahre 

(M = 53.17, SD = 20.99) haben im Mittel mehr Kraft als Personen älter als 50 Jahre (M = 36.05, SD = 

18.82), und Männer (M = 52.40, SD = 20.40) haben im Mittel mehr Kraft als Frauen (M = 32.40, SD = 

18.70). Deskriptive Statistiken für alle untersuchten Stichproben sind in Tabelle 7.1 angegeben. 

Abbildung 7.6 zeigt einen grafischen Vergleich der Mittelwerte.“ 

Tabelle 7.1 

Deskriptive Statistiken 

Altersgruppe Geschlecht M SD n 

Unter 50 Männlich 64.27 19.81 26 

 Weiblich 42.08 15.81 26 

Über 50 Männlich 43.32 15.84 34 

 Weiblich 25.30 17.98 23 
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Beispiel mit Wechselwirkung, 2x3 Design 

Zur Illustration eines 2x3 Designs verwenden wir einen weiteren fiktiven Datensatz, der ursprünglich 

auf Andy Field (2024) zurückgeht, wenn er auch in der aktuellsten Version seines Buchs nicht mehr in 

dieser Form vorkommt. Sie finden den Datensatz in der Datendatei „musikgeschmack.sav“, die Sie in 

dem elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem 

Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen können. 

In dieser Datei finden wir Angaben von insgesamt 90 Personen dazu, wie gut ihnen Musik der 

Bands bzw. Interpreten Nirvana, AC/DC oder Bon Jovi gefällt. Positive Zahlen drücken Gefallen aus, 

negative Zahlen Missfallen und je größer der Betrag der Zahl, desto höher Gefallen oder Missfallen. Die 

Personen wurden dabei zufällig aus zwei Altersgruppen ausgewählt: 45 Personen sind älter als 40 Jahre, 

45 Personen sind maximal 40 Jahre alt. Die Forschungsfrage lautet: Unterscheidet sich der 

Musikgeschmack dieser beiden Altersgruppen? 

Eine Möglichkeit diese Frage auf Basis dieses Datensatzes zu erhellen, besteht in der 

Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung. Dazu wählen wir erst 

einmal wieder Analyze >> General Linear Model >> Univariate… aus und ziehen die Variable Gefallen 

in das Feld „Dependent Variable“ und die Variablen Musik und Altersgruppe in das Feld „Fixed 

Factor(s)“. Daraufhin fordern wir unter „Plots…“ wieder zwei verschiedene Grafiken an, einmal mit der 

Variable Musik auf der horizontalen Achse und der Variable Altersgruppe durch unterschiedliche Linien 

dargestellt, und einmal umgekehrt. Dieses Mal werden wir auch gut erkennen können, wie die beiden 

Darstellungen denselben Sachverhalt unterschiedlich darstellen. Wir verlangen auch wieder, dass 

Fehlerbalken dargestellt werden, die 95%-KI entsprechen sollen. Danach wählen wir unter „Options…“ 

auch wieder „Descriptive statistics“, „Homogeneity tests“ sowie „Estimates of effect size“ aus. 

Post-hoc Vergleiche 

Schließlich fordern wir post-hoc Vergleiche an, indem wir auf „EM Means…“ (und nicht auf „Post 

Hoc…“) klicken. „EM Means“ steht hier für „Estimated Marginal Means“ und bezeichnet den Vergleich 

der Randmittel, d.h. jener Mittelwerte, die für die einzelnen Faktoren bzw. Faktorstufen ohne 

Berücksichtigung der jeweils anderen Faktoren bzw. Faktorstufen gebildet werden. In dem sich 

https://osf.io/9tcx3/
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öffnenden Fenster ziehen wir die Variablen Kombination Musik*Altersgruppe von links in das Feld 

„Display Means For…“ und wählen anschließend noch „Compare simple main effects“ aus. Für die 

Korrektur der p-Werte haben wir die Wahl zwischen Fishers LSD (keine Korrektur), Bonferroni und 

Sidak. Da für die Sidak-Korrektur die zu testenden Hypothesen unabhängig sein müssen (für eine exakte 

Korrektur der FWER), was im Allgemeinen nicht der Fall ist, wählen wir Bonferroni, da für diese 

Korrektur die FWER jedenfalls nicht unterschätzt wird (d.h. sie ist bei einem gewünschten 𝛼 von 0.5% 

sicher nicht größer als dieser Wert). Die in diesem Untermenü vorgenommenen Einstellungen sind noch 

einmal in Abbildung 7.7 zusammengefasst. 

 

Abbildung 7.7. Anforderung von post-hoc Vergleichen im Nachgang einer zweifaktoriellen Varianz-

analyse. 

Ergebnisse 

Nach dem Einfügen in die Syntax und Ausführen der entsprechenden Kommandozeilen bekommen wir 

wieder eine umfangreiche Ausgabe. An der Tabelle „Levene’s Test of Equality of Error Variances“ 

sehen wir, dass Levenes Test auch in diesem Beispiel nicht signifikant ist und freuen uns, da daher nicht 

noch mehr als ohnehin schon zu tun bleibt. In der Tabelle „Tests of Between-Subjects Effects“ erkennen 

wir einen signifikanten Haupteffekt für die Variable Musik sowie eine signifikante Interaktion. Wir 

finden dort auch wieder alle Zahlen, die wir für einen ordnungsgemäßen Ergebnisbericht brauchen, siehe 

nächster Abschnitt. 
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Ab der Überschrift „Estimated Marginal Means“ finden wir schließlich alle Ergebnisse, die für 

unsere angeforderten post-hoc Vergleiche relevant sind und noch einiges mehr. Bei letzterem handelt es 

sich z.B. schon um die verschiedenen Randmittel und deren Konfidenzintervalle, die in der Tabelle 

„Estimates“ angegeben sind, siehe Abbildung 7.8. An diesen ließen sich einige Unterschiede zwischen 

den Altersgruppen sofort ablesen. Gleichzeitig wären die hier gegebenen Punktschätzungen und 

Intervallschätzungen auch sehr gut brauchbar, wenn man schlichtweg an einer Schätzung der jeweiligen 

Populationsmittelwerte interessiert ist und gar nicht unbedingt an paarweisen Tests der 

Mittelwertsunterschiede. Am Standardfehler in der Tabelle erkennt man auch, dass es sich bei diesem 

um eine Schätzung mittels der gepoolten Varianz aus allen Stichproben handelt, da der Wert für alle 

Stichproben derselbe ist. Zu beachten ist bei dieser Tabelle schließlich noch, dass es sich bei dem 

Konfidenzniveau der Konfidenzintervalle nicht um ein korrigiertes Konfidenzniveau (zur Kontrolle der 

FWER) handelt. 

 

Abbildung 7.8. Punkt- und Intervallschätzungen der einzelnen Populationsmittelwerte für alle sechs 

Stichproben. 

Zu beachten bei den Ergebnissen der angeforderten post-hoc Vergleiche ist auch, dass diese für 

eine zweifaktorielle Varianzanalyse in zweifacher Ausführung kommen. In der ersten Ausführung, die 

bei der Überschrift „1. Interpret * Altersgruppe (1=älter,2=jünger)“ beginnt, werden zuerst einfaktorielle 

Varianzanalysen für jeweils jede Stufe der Variable Altersgruppe für den Faktor Musik durchgeführt (zu 

finden allerdings in der Tabelle ganz am Schluss dieses Abschnitts). Diese Ergebnisse finden sich in der 

Tabelle „Univariate Tests“ und wir sehen, dass sich der Gefallen an der jeweiligen Musik sowohl in der 

jüngeren als auch der älteren Gruppe zwischen den drei Interpreten unterscheidet, siehe auch Abbildung 
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7.9. In der Tabelle „Pairwise Comparisons“, siehe auch Abbildung 7.10, finden wir schließlich alle 

paarweisen Tests auf Mittelwertsunterschiede für beide Altersgruppen. Hier sehen wir u.a., dass der 

älteren Gruppe Nirvana im Mittel signifikant weniger gefällt als AC/DC und Bon Jovi, welche der 

älteren Gruppe ähnlich gut gefallen (die Mittelwerte unterscheiden sich auch nicht signifikant), während 

der jüngeren Gruppe Bon Jovi im Mittel signifikant weniger gefällt als die beiden anderen Interpreten, 

welche wiederum der jüngeren Gruppe ähnlich gut gefallen (auch hier unterscheiden sich die beiden 

Gruppenmittelwerte nicht signifikant). 

 

Abbildung 7.9. Einfaktorielle Varianzanalysen für jede Stufe des Faktors Altersgruppe. 

 

Abbildung 7.10. Alle paarweisen Tests für Unterschiede zwischen Gruppenmittelwerten für jede Stufe 

des Faktors Altersgruppe. 
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In der zweiten Ausführung, deren Ergebnisse ab „2. Interpret * Altersgruppe 

(1=älter,2=jünger)“ aufgeführt sind, werden zuerst (auch wenn die entsprechende Tabelle wieder erst 

ganz am Ende dieses Abschnitts zu finden ist) einfaktorielle Varianzanalysen für jede Stufe der 

Variablen Musik für den Faktor Altersgruppe durchgeführt, siehe Abbildung 7.11. Da es nur zwei 

Altersgruppen gibt, handelt es sich hierbei schlichtweg um Vergleiche der Mittelwerte für die beiden 

Altersgruppen auf jeder Stufe der Variable Musik. Wir sehen, dass sich die Altersgruppen für die 

Interpreten Nirvana und Bon Jovi signifikant unterscheiden und für AC/DC nicht. Allerdings erkennen 

wir in dieser Tabelle nicht die Richtung des Unterschieds und haben auch keine Konfidenzintervalle für 

die Mittelwertsunterschiede. Diese finden wir nur in der Tabelle mit allen paarweisen Unterschieden 

(diese Konfidenzintervalle sind nun für multiple Vergleiche korrigiert), siehe Abbildung 7.12. Aber wir 

erkennen an der Gleichheit der p-Werte in diesen beiden Tabellen durchaus, dass es sich bei den F-Tests 

und den t-Tests für den Vergleich von zwei Mittelwerten um zwei äquivalente Testverfahren handelt. 

 

Abbildung 7.11. Einfaktorielle Varianzanalysen für jede Stufe des Faktors Musik. 

 

Abbildung 7.12. Alle paarweisen Tests für Unterschiede zwischen Gruppenmittelwerten für jede Stufe 

des Faktors Musik. 
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Ergebnisbericht 

Ein Ergebnisbericht für eine zweifaktorielle Varianzanalyse mit einem 2x3 Design inkl. post-hoc 

Vergleichen könnte beispielsweise folgendermaßen aussehen: „Zur Erhellung der Fragestellung wurde 

eine zweifaktorielle Varianzanalyse ohne Messwiederholung durchgeführt. Levenes Test war nicht 

signifikant (p > .05), weshalb von Varianzhomogenität ausgegangen wurde. 

Jüngere (bis 40 Jahre) und ältere (ab 41 Jahre) Personen unterscheiden sich im Mittel nicht 

signifikant darin, wie sehr ihnen die untersuchte Musik insgesamt gefällt (F(1,84) < 0.01, p = .966, ηp
2 

< .01). Die drei Bands Nirvana, AC/DC und Bon Jovi werden aber im Mittel signifikant unterschiedlich 

bewertet (F(2,84) = 105.62, p < .001, ηp
2 = .72). Zudem besteht für die im Mittel resultierende 

Bewertung eine signifikante Interaktion zwischen dem Alter der bewertenden Person und der gehörten 

Band (F(2,84) = 400.98, p < .001, ηp
2 = .91). 

Zur weiteren Analyse paarweiser Mittelwertsunterschiede wurden paarweise post-hoc 

Vergleiche mit einer Korrektur der p-Werte für multiple Vergleiche gemäß Bonferroni durchgeführt. Im 

Folgenden werden lediglich korrigierte p-Werte berichtet. Aus diesen ergab sich, dass Nirvana von 

jüngeren Personen signifikant lieber gehört wird als von älteren Personen (p < .001). Bon Jovi hingegen 

wird von älteren signifikant lieber gehört als von jüngeren Personen (p < .001). AC/DC wird nicht 

signifikant unterschiedlich gerne gehört (p = .561). 

Innerhalb der Altersgruppen ergaben sich folgende Unterschiede. Jüngere Personen hören 

sowohl Nirvana als auch AC/DC signifikant lieber als Bon Jovi (jeweils p < .001). Nirvana und AC/DC 

werden von jüngeren Personen nicht signifikant unterschiedlich gerne gehört (p > .999). Ältere Personen 

bevorzugen Bon Jovi und AC/DC signifikant gegenüber Nirvana (jeweils p < .001). Bon Jovi und 

AC/DC werden von älteren Personen nicht signifikant unterschiedlich gerne gehört (p = .148). 

Die resultierenden deskriptiven Statistiken sind in Tabelle 7.2 zusammengestellt. Abbildung 

7.13 zeigt einen Vergleich der geschätzten Randmittelwerte und deren 95%-KI für die unterschiedlichen 

Bands und Altersgruppen.“ 

Da dieser Ergebnisbericht bereits sehr umfangreich ausfällt, bietet es sich an, kurz darüber zu 

reflektieren, was die grundsätzlichen Bestandteile eines entsprechenden Ergebnisberichts sind und in 
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welcher Reihenfolge sie erläutert werden sollten. Im ersten Teil wird die Methode der Auswertung und 

die Überprüfung etwaiger Voraussetzungen kurz erläutert. Gerade bei komplexeren Analysen kann dies 

wichtig sein, weil dann nicht unbedingt mehr klar aus den angegebenen Teststatistiken, Freiheitsgraden 

etc. ersichtlich ist, um welches Verfahren es sich an welcher Stelle handelt. In einem zweiten Teil 

werden die Ergebnisse der drei Omnibustests für die beiden Haupteffekte und die Interaktion berichtet. 

In einem dritten Teil werden die durchgeführten post-hoc Vergleiche erläutert. Dabei genügt es meist, 

die verschiedenen paarweisen Vergleiche und die entsprechenden p-Werte anzugeben. Eine Angabe 

über die Korrektur der letzteren ist aber für eine angemessene Interpretation derselben notwendig. 

Schließlich sollten auch die deskriptiven Statistiken dargestellt werden. Bei komplexeren Analysen ist 

dafür eine Tabelle meist zweckdienlich. Eine graphische Darstellung kann zudem die Bedeutung der 

Ergebnisse oft klarer erhellen als das bloße Auflisten von Zahlen. Dabei erlauben Konfidenzintervalle 

auch einen guten Überblick über plausible Werte für einzelne Populationsmittelwerte. 

Tabelle 7.2 

Deskriptive Statistiken 

Altersgruppe Interpret M SD n 

> 40 Jahre Nirvana -75.87 14.37 15 

 AC/DC 59.93 19.98 15 

 Bon Jovi 74.27 22.29 15 

0-40 Jahre Nirvana 66.20 19.90 15 

 AC/DC 64.13 17.00 15 

 Bon Jovi -71.47 23.18 15 
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Abbildung 7.13. Visuelle Darstellung der unterschiedlichen Bewertung der drei Interpreten durch die 

beiden Altersgruppen. 

 

Abbildung 7.14. Alternative Darstellung mit den beiden Altersgruppen links und rechts und den drei 

Interpreten durch verschiedene Linien. 
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Stichprobenplanung 

Zwar kann auch für mehrfaktorielle Varianzanalysen eine Stichprobenplanung in G*Power durch-

geführt werden, diese wird aber nicht im Detail besprochen, da die statistischen Hypothesen der Omni-

bustests nur selten relevante inhaltliche Forschungsfragen beantworten können (Bühner et al., 2025). 

Soll dennoch eine Stichprobenplanung durchgeführt werden, so ist unter „Test family“ 

wiederum „F tests“ auszuwählen. Unter „Statistical test“ ist „ANOVA: Fixed effects, special, main 

effects and interactions“ auszuwählen. Unter “Type of power analysis” ist wieder “A priori: Compute 

required sample size – given α, power, and effect size” auszuwählen. Die Effektstärke 𝑓 für den 

interessierenden Effekt (also einen der Haupteffekte oder die Interaktion) kann am besten mittels der 

Schaltfläche „Determine“ aus 𝜂𝑝
2 direkt in G*Power berechnet werden. Bei „Number of groups“ ist 

neben der obligatorischen Angabe des gewünschten Signifikanzniveaus und der Teststärke schließlich 

noch die Anzahl der Stichproben anzugeben, die untersucht werden sollen. Im Falle eines 2 x 2 Designs 

wären das also 4 Stichproben, im Falle eines 2 x 3 Designs 6 Stichproben usw. Schließlich müssen noch 

die Zählerfreiheitsgrade („numerator df“) angegeben werden. Dabei handelt es sich um das Produkt der 

Anzahl der Stufen minus 1 aller Faktoren. D.h., bei einem 2 x 2 Design wäre hier (2 – 1)(2 – 1) = 1 

einzutragen, bei einem 2 x 3 Design (2 – 1)(3 – 1) = 2 usw. Der Grund dafür, dass diese Angabe 

zusätzlich zur Anzahl der Stichproben gemacht werden muss, liegt darin, dass es Designs mit derselben 

Anzahl an Gruppen, aber unterschiedlichen Zählerfreiheitsgraden geben kann, z.B. 2 x 2 x 3 (2 

Zählerfreiheitsgrade) und 2 x 6 (5 Zählerfreiheitsgrade). Beide Informationen werden aber zur 

Berechnung des F-Werts und daher auch für die Stichprobenplanung benötigt, daher reicht nur die 

Angabe der Anzahl der Stichproben nicht aus. 
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Übungsaufgaben 

Beispiel 7.1 

Worin unterscheiden sich die Voraussetzungen für eine mehrfaktorielle Varianzanalyse von jenen für 

eine einfaktorielle Varianzanalyse? 

Beispiel 7.2 

Welche Voraussetzungen müssen für eine mehrfaktorielle Varianzanalyse erfüllt sein? 

Beispiel 7.3 

Welche Möglichkeiten gibt es im Rahmen von paarweisen post-hoc Vergleichen nach einer 

zweifaktoriellen Varianzanalyse in SPSS, um p-Werte und Konfidenzniveaus für multiple Vergleiche 

zu korrigieren? 

(a) Bonferroni-Korrektur. 

(b) Fishers Least-Significant-Difference Test. 

(c) Sidak-Korrektur. 

(d) Tukeys Honestly-Significant-Difference Test. 

Beispiel 7.4 

Welche Aussage(n) trifft(treffen) zu? 

(a) Unter einem Haupteffekt versteht man die Auswirkung des einen Faktors auf die Wirkung des 

anderen Faktors auf die AV. 

(b) Gemäß Cohens Heuristik (1988) gelten Effektstärken 𝜂𝑝
2 zwischen 0.01 und 0.06 als klein, 

zwischen 0.06 und 0.14 als mittel, und ab 0.14 als groß. 

(c) Es kann sein, dass es keinen Haupteffekt für einen Faktor gibt, dieser aber trotzdem eine 

Auswirkung auf die AV auf einzelnen Stufen eines anderen Faktors hat. 

(d) Es kann sein, dass es einen Haupteffekt für einen Faktor gibt, dieser aber auf einzelnen Stufen 

eines anderen Faktors keine Auswirkung auf die AV hat. 
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Beispiel 7.5 

In Kapitel 14 (vielleicht in neueren Auflagen nicht in Kapitel 14, aber jedenfalls im Kapitel zu 

mehrfaktoriellen Varianzanalysen ohne Messwiederholung) des Buchs „Discovering Statistics Using 

IBM SPSS Statistics“ von Andy Field (2024) findet man das folgende Beispiel (Übersetzung d. Verf.): 

„Eine Anthropologin interessierte sich für die Auswirkungen von Alkohol auf die 

Partner:innenwahl in Nachtclubs. Ihre Überlegung war, dass nach dem Genuss von Alkohol die 

subjektive Wahrnehmung der körperlichen Attraktivität ungenauer wird (der bekannte „Bier-Brillen-

Effekt“). Außerdem wollte sie wissen, ob dieser Effekt bei Männern und Frauen unterschiedlich ist. 

Daraufhin nahm sie die Studienteilnehmer:innen in einen Nachtclub mit und gab ihnen keinen Alkohol 

(die Teilnehmer:innen erhielten stattdessen Plazebogetränke aus alkoholfreiem Lagerbier), 2 Pints 

starkes Lagerbier oder 4 Pints starkes Lagerbier zu trinken. Am Ende des Abends machte sie ein Foto 

von der Person, mit der der:die jeweilige Teilnehmer:in geplaudert hatte. Anschließend ließ sie eine 

Gruppe unabhängiger Beurteiler:innen die Attraktivität der Person auf jedem Foto auf einer Skala von 

100 bewerten.“ 

Die Fragestellung der (fiktiven) Studie lautete also: Unterscheidet sich die Attraktivität des:der 

ausgewählten Gesprächspartners:in in Abhängigkeit vom (eigenen) Geschlecht und der Menge 

getrunkenen Alkohols? Sie finden den zugehörigen Datensatz in der Datendatei „Goggles.sav“, die Sie 

von der frei zugänglichen Webseite mit ergänzenden Ressourcen für Fields Buch „Discovering Statistics 

Using IBM SPSS Statistics“ unter https://edge.sagepub.com/field5e/student-resources/datasets 

herunterladen können. Als Signifikanzniveau ist 𝛼 = .05 zu wählen, wobei p-Werte im Rahmen von 

post-hoc Vergleichen entsprechend zu korrigieren sind. 

Beispiel 7.6 

Eine (fiktive) Forschungsgruppe möchte untersuchen, wie sich verschiedene Unterrichtsmethoden in 

unterschiedlichen Unterrichtsfächern auf das Wissen von Schüler:innen am Semesterende auswirken. 

Dazu soll der Einsatz von Tafel bzw. Powerpoint-Folien als Unterrichtsmethoden im Geschichts- und 

Mathematikunterricht untersucht werden. Am Ende des Semesters wird das Wissen aller teilnehmenden 

Schüler:innen mit standardisierten Wissenstests erhoben, die einen Vergleich des Mathematik- und 

https://edge.sagepub.com/field5e/student-resources/datasets
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Geschichtswissens auf einer Skala von 0-100 erlauben. Eine der zentralen Fragestellungen der Studie 

lautet: Hängt es von der Art des Unterrichtsfachs ab, wie effektiv (bezogen auf die Wissensvermittlung) 

die eingesetzten Präsentationsmethoden sind? 

Den Datensatz für dieses Beispiel finden Sie in der Datei „Kap7UE6.sav“, die Sie in dem 

elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument 

finden, das Sie unter https://osf.io/9tcx3/ herunterladen können. Beantworten Sie die folgenden Fragen: 

(a) Was sind die UV und die AV in diesem Beispiel? 

(b) Wie viele Stufen haben die Faktoren in diesem Beispiel jeweils? 

(c) Wie lässt sich die genannte zentrale Forschungsfrage prinzipiell beantworten? 

(d) Führen Sie für dieses Beispiel eine entsprechende Varianzanalyse mit SPSS durch und 

verfassen Sie einen entsprechenden Ergebnisbericht. 

Wählen Sie für alle statistischen Analysen ein Signifikanzniveau von 𝛼 = .005, wobei p-Werte im 

Rahmen von post-hoc Vergleichen entsprechend zu korrigieren sind. 

Beispiel 7.7 

Eine (fiktive) Forschungsgruppe untersuchte, ob sich unterschiedliche Fitnessprogramme unterschied-

lich auf die allgemeine Fitness von Personen aus verschiedenen Altersgruppen auswirkt. Unterschieden 

wurden junge Erwachsene (bis inkl. 30 Jahre), Erwachsene mittleren Alters (31-50 Jahre), und ältere 

Erwachsene (> 50 Jahre). Verglichen wurden konventionelles Krafttraining mit Geräten und HIIT-

Programme mit dem eigenen Körpergewicht. Die allgemeine Fitness wurde mit einem Fitnessindex auf 

einer Skala von 0-100 Punkten erfasst. 

Die (fiktive) Forschungsgruppe hat bereits einen (fiktiven) Ergebnisbericht erstellt und Sie 

darum gebeten, diesen zu kontrollieren. Aufgrund des wachsenden Misstrauens unter Forscher:innen 

wegen des hohen Publikationsdrucks und den üblen Machenschaften von Dr. Publish-Perish 

(Gigerenzer, 2004) hat Ihnen die Forschungsgruppe den Ergebnisbericht nur in Papierform zukommen 

lassen (wobei Ihnen selbst nicht ganz klar ist, wie das verhindern soll, dass Sie die Ergebnisse einfach 

kurzerhand selbst publizieren) und leider haben Sie Ihren am Morgen bitter benötigten Kaffee darüber 

verschüttet. Trotz großer Bemühungen sind daher einige Stellen unleserlich geworden. Um diese Stellen 

https://osf.io/9tcx3/
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vervollständigen zu können, hat Ihnen die Forschungsgruppe zähneknirschend den Originaldatensatz 

überlassen. Diesen finden Sie in der Datendatei „Kap7UE7.sav“, die Sie in dem elektronischen 

Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument finden, das Sie 

unter https://osf.io/9tcx3/ herunterladen können. Verwenden Sie den Datensatz und geeignete 

statistische Verfahren, um den folgenden Ergebnisbericht an den gekennzeichneten Stellen zu 

vervollständigen. 

Ergebnisbericht: Es wurde eine zweifaktorielle Varianzanalyse ohne Messwiederholung mit den 

Faktoren Altersgruppe (drei Stufen: jung, d.h. 18-30 Jahre, mittel, d.h. 31-50 Jahre, alt, d.h. > 50 Jahre) 

und Trainingsmethode (zwei Stufen: konventionelles Krafttraining mit Gewichten vs. HIIT mit eigenem 

Körpergewicht) durchgeführt. Das Signifikanzniveau wurde zu 𝛼 = .005 gewählt. 

Insgesamt wurden Daten von ___________ Personen in einem balancierten Design erhoben. Levenes 

Test war nicht signifikant (p > .05), daher wurde von _______________________________ in den 

einzelnen Populationen ausgegangen. 

Im Mittel war die allgemeine Fitness zwischen den unterschiedlichen Altersgruppen signifikant 

verschieden (F(___________) = 54.15, p < .001, ηp
2 = ___________, d.h. ein ___________ Effekt 

gemäß Cohen (1988)). Im Mittel war die erzielte allgemeine Fitness auch zwischen den beiden 

Fitnessprogrammen signifikant unterschiedlich (F(___________) = ___________, ___________, ηp
2 = 

.08, d.h. ein ___________ Effekt gemäß Cohen (1988)). Die Interaktion zwischen den beiden Faktoren 

war ______________________ (F(___________) = ___________, ___________, ηp
2 = ___________, 

d.h. ein ___________ Effekt gemäß Cohen (1988)). Zur weiteren Analyse paarweiser 

Mittelwertsunterschiede wurden post-hoc Tests mit einer Korrektur der p-Werte für multiple Vergleiche 

gemäß Bonferroni durchgeführt. Im Folgenden werden lediglich korrigierte p-Werte berichtet. 

Sowohl bei konventionellem Krafttraining mit Gewichten als auch bei HIIT-Programmen mit 

dem eigenen Körpergewicht nahm die erzielte, allgemeine Fitness mit fortschreitendem Alter ab. Bei 

konventionellem Krafttraining waren alle paarweisen Mittelwertsunterschiede zwischen den 

unterschiedlichen Altersgruppen signifikant (𝑝 ≤ .001). Bei HIIT-Programmen war der Unterschied 

zwischen jungen und mittleren Erwachsenen nicht signifikant (𝑝 > .999), während die Unterschiede 

https://osf.io/9tcx3/
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zwischen jungen und alten sowie mittleren und alten Erwachsenen jeweils signifikant waren 

(___________). Zudem unterschieden sich konventionelles Krafttraining und HIIT-Programme sowohl 

bei mittleren (___________) als auch älteren (___________) Erwachsenen signifikant, jedoch nicht bei 

jungen Erwachsenen (___________). Bei allen Altersgruppen war die erzielte allgemeine Fitness jedoch 

bei HIIT-Programmen ______________________ als bei konventionellem Krafttraining. 

Punkt- und Intervallschätzungen für die erzielte allgemeine Fitness in Abhängigkeit von Altersgruppe 

und verwendeter Trainingsmethode sind in Abbildung 7.15 dargestellt. Mittelwerte, 

Standardabweichungen und Gruppengrößen sind in Tabelle 7.3 zusammengefasst. 

Tabelle 7.3 

Deskriptive Statistiken 

Altersgruppe Training M SD n 

Jung: 18-30 Jahre Konv. Kraft    

 HIIT 77.64   

Mittel: 31-50 Jahre Konv. Kraft    

 HIIT   45 

Alt: > 50 Jahre Konv. Kraft    

 HIIT  15.36  
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Abbildung 7.15. Punkt- und Intervallschätzungen für die erzielte allgemeine Fitness in Abhängigkeit 

von Altersgruppe und verwendeter Trainingsmethode. 

Beispiel 7.8 

Eine therapeutische Intervention soll mit einer entsprechenden Kontrollbedingung (tau = treatment as 

usual) verglichen werden. Zudem soll untersucht werden, ob sich die Wirksamkeit der Intervention für 

Frauen und Männer unterscheidet. Dazu wird für 120 Personen die Veränderung der Symptomstärke 

durch die Intervention bzw. die Kontrollbedingung erhoben. Die entsprechenden Daten sind im 

Datensatz „Kap7UE8.sav“ zu finden. 

Wählen Sie ein geeignetes statistisches Verfahren um zu untersuchen, ob sich die Wirksamkeit 

(gemessen an der Änderung der Symptomstärke) der Intervention von der Kontrollbedingung 

unterscheidet und ob dieser Unterschied davon abhängt, ob Frauen oder Männer untersucht werden. 

Erstellen Sie anschließend einen entsprechenden Ergebnisbericht. 
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Kapitel 8 

Varianzanalysen mit Messwiederholung 

Stefan E. Huber 

Auch in diesem Kapitel werden wir uns wieder hauptsächlich auf die Durchführungsaspekte, diesmal 

aber von Varianzanalysen mit Messwiederholung in SPSS beschränken. Da wir diesbezüglich sowohl 

ein- und zweifaktorielle Varianzanalysen mit Messwiederholung als auch ein gemischtes Design, d.h. 

eine Varianzanalyse mit einem Zwischensubjektfaktor (auch: nicht-messwiederholter Faktor, Zwischen-

Personen-Faktor oder engl.: Between-subjects-factor) und einem Innersubjektfaktor (auch 

Messwiederholungsfaktor, Innerhalb-Personen-Faktor oder engl.: Within-subjects-factor), besprechen 

werden, ist dafür ohnehin genug zu tun. Gleichzeitig bleiben viele Aspekte ganz analog zum Fall von 

Varianzanalysen ohne Messwiederholung, auch wenn sich konzeptuell, sozusagen im Hintergrund 

durchaus einiges ändert (Quadratsummenzerlegung, Variation der AV zwischen Personen etc.). Im 

Vordergrund gibt es nach wie vor für jeden Faktor einen F-Wert, zwei Freiheitsgrade, einen p-Wert, 

eine Testentscheidung. Eine Sache, die aber jedenfalls von großer Relevanz bleibt, sind die Voraus-

setzungen, die für Varianzanalysen mit Messwiederholung erfüllt sein müssen. 

Voraussetzungen für Varianzanalysen mit Messwiederholung 

Die Voraussetzungen für Varianzanalysen mit Messwiederholung sind (Bühner et al., 2025): 

• Intervallskalenniveau der AV. 

• Normalverteilung der AV auf jeder Faktorstufe. 

o Präziser: sowohl Personeneffekte als auch Fehler sind jeweils unabhängig voneinander 

unabhängig und identisch normalverteilt mit Mittelwert Null und jeweils bestimmter 

(unbekannter) Varianz. 

• Kovarianz der Personeneffekte und Fehler ist Null. 

• Compound Symmetry (CS): Kovarianzen der Messwerte zwischen den Messzeitpunkten sind 

identisch und Varianzen der Messwerte sind zwischen den Messzeitpunkten homogen. 
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• Bei gemischten Designs: Varianzhomogenität sowie Gleichheit der Kovarianzmatrizen über die 

Faktorstufen des Zwischensubjektfaktors. 

Während die ersten drei dieser Voraussetzungen üblicherweise nicht überprüft werden (auch die 

Varianzanalyse mit Messwiederholung ist relativ robust gegenüber Verletzung der 

Normalverteilungsannahme, solange die übrigen Annahmen gut erfüllt sind; die anderen beiden 

Voraussetzungen sollten durch ein passendes Studiendesign gewährleistet werden), ist die Annahme der 

CS vor der Durchführung einer Varianzanalyse zu prüfen. 

Wie auch schon bei der Prüfung der Varianzhomogenität im Falle der Varianzanalyse ohne 

Messwiederholung (Levenes Test), wird aber auch für diesen Fall eine entsprechende Prüfung 

standardmäßig in SPSS durchgeführt und korrigierte Freiheitsgrade für die Berechnung des p-Werts 

mittels der F-Statistik für die gegebene Stichprobe berechnet. Strenggenommen handelt es sich bei dem 

dafür verwendeten Mauchly-Test nicht um einen Test der CS, sondern der abgeschwächten Annahme 

der Sphärizität, was für die meisten Fälle aber einen hinreichenden Test darstellen sollte. Ist der 

Mauchly-Test signifikant (üblicherweise mit 𝛼 = .05), so wird von Verletzung der Sphärizität (und, in 

Extension, von Verletzung der CS) ausgegangen und korrigierte Werte für die Freiheitsgrade der F-

Verteilung zur Berechnung des p-Wertes verwendet. Dafür stehen mehrere Korrekturverfahren zur 

Verfügung. Häufig wird dabei auf das Verfahren nach Greenhouse-Geisser zurückgegriffen. Dieses ist 

aber sehr konservativ, weshalb stattdessen die Verwendung des etwas liberaleren Huynh-Feldt 

Verfahrens empfohlen wird. 

Das klingt alles recht kompliziert, die Praxis ist aber in diesem Fall deutlich einfacher als die 

Theorie. Davon werden wir uns im Folgenden an je einem Beispiel für eine einfaktorielle und eine 

zweifaktorielle Varianzanalyse mit Messwiederholung sowie für ein gemischtes Design überzeugen. 

Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung in SPSS 

Gegeben sind (fiktive) Depressionswerte (gemessen mit Becks Depressionsinventar) für eine Stichprobe 

von 𝑛 = 100 zufällig ausgewählten Patient:innen zu vier Messzeitpunkten während einer 

Psychotherapie. Die Fragestellung lautet: Unterscheiden sich die Erwartungswerte der 

Depressionswerte zwischen den Messzeitpunkten in der Population der Patient:innen? Bei den 
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Messzeitpunkten handelt es sich um einen Innersubjektfaktor: für jede Person gibt es vier Messwerte. 

Dieser ist auch der einzige Faktor. Ist der Omnibustest für diesen Faktor signifikant, so gehen wir von 

einem Unterschied der Erwartungswerte für mindestens zwei der Messzeitpunkte aus und können die 

Frage demnach affirmativ beantworten. Das geeignete Verfahren für diese Fragestellung ist also eine 

einfaktorielle Varianzanalyse mit Messwiederholung. Die Daten für dieses Beispiel finden sich in der 

Datei „Kap8daten1.sav“, die Sie in dem elektronischen Ergänzungsmaterial (Engl.: electronic 

supplementary material) zu diesem Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen 

können. 

Zur Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung wählen wir in 

SPSS nun Analyze >> General Linear Model >> Repeated Measures…. Im sich öffnenden Menü 

müssen wir nun erst einmal unseren Messwiederholungsfaktor definieren. Dazu geben wir diesem 

einmal einen Namen, z.B. „Messzeitpunkt“, und geben anschließend an, dass er über 4 Stufen verfügt, 

indem wir bei „Number of Levels“ die Zahl 4 eintragen, siehe Abbildung 8.1 links. Dann klicken wir 

auf „Add“, woraufhin die Angabe „Messzeitpunkt(4)“ in dem Feld rechts erscheint, siehe Abbildung 

8.1 rechts. Nun klicken wir auf „Define“. 

Im sich öffnenden Fenster weisen wir die vier Variablen „BDI1“, „BDI2“, „BDI3“ und „BDI4“ 

den vier Stufen des soeben definierten Messwiederholungsfaktors zu, indem wir alle vier Variablen 

markieren und in das Fenster „Within-Subjects Variables (Messzeitpunkt)“ ziehen, siehe Abbildung 8.2. 

 

Abbildung 8.1. Definition unseres Messwiederholungsfaktors. 

https://osf.io/9tcx3/
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Abbildung 8.2. Zuweisung unserer vier Variablen zu den vier Stufen unseres soeben definierten 

Messwiederholungsfaktors. 

Unter „Plots…“ wählen wir dann noch aus, dass wir den Messwiederholungsfaktor auf der 

horizontalen Achse darstellen wollen und auch gerne wieder Fehlerbalken hätten, die 95%-KI 

entsprechen, siehe Abbildung 8.3. Unter „Options…“ wählen wir „Descriptive statistics“ und 

„Estimates of effect size“. Unter „EM Means…“ ziehen wir schließlich noch den Faktor Messzeitpunkt 

in das Feld „Display Means for“, wählen „Compare main effects“ und fordern eine Bonferroni-

Korrektur an, um p-Werte und Konfidenzniveaus für alle paarweisen Vergleiche für die Mittelwerte der 

vier Messzeitpunkte entsprechend einer FWER von 5% zu adjustieren. Dann fügen wir wieder alles in 

eine Syntaxdatei ein, führen die entsprechenden Kommandozeilen aus und wenden uns der dadurch 

erzeugten, recht umfangreichen Ausgabe zu (die hier nicht dargestellt, sondern nur beschrieben wird). 

In der Tabelle „Within-Subjects Factors“ finden wir noch einmal die Definition unseres 

Messwiederholungsfaktors. In der Tabelle „Descriptive Statistics“ finden wir deskriptive Statistiken in 

Form von Mittelwerten und Standardabweichungen unserer AV für die vier Messzeitpunkte. Die Tabelle 

„Multivariate Tests“ können wir ignorieren (Interessierte finden mehr Informationen zu dieser Tabelle 

z.B. bei Field, 2024). In der Tabelle „Mauchly’s Test of Sphericity“ finden wir das Ergebnis des 

Mauchly-Tests. Wir sehen, dass dieser signifikant ist und werden daher unten die Ergebnisse für gemäß 

Huynh-Feldt korrigierte Freiheitsgrade und p-Werte berichten. 
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Abbildung 8.3. Anforderung einer grafischen Darstellung von Punkt- und Intervallschätzungen unserer 

Populationsmittelwerte für die vier Messzeitpunkte. 

In der Tabelle „Tests of Within-Subjects Effects“ finden wir die eigentlichen Ergebnisse unserer 

Varianzanalyse. Hier schauen wir uns aufgrund der Signifikanz des Mauchly-Tests lediglich die Zeilen 

an, die mit „Huynh-Feldt“ bezeichnet werden, um Freiheitsgrade, F- und p-Wert sowie Effektstärke für 

unsere Varianzanalyse abzulesen. In unserem Fall also: F(2.86,283.40) = 146.84, p < .001, 𝜂𝑝
2 = .60. Die 

Effektstärke sagt uns in diesem Fall, dass 60% der Variabilität im Depressionswert durch den 

Messzeitpunkt erklärt werden können. Das ist ein sehr großer Wert. Auch hier gelten gemäß Cohens 

Heuristik (1988) wieder Effektstärken zwischen 0.01 und 0.06 als klein, zwischen 0.06 und 0.14 als 

mittel, und ab 0.14 als groß. 

Die Tabelle „Tests of Within-Subjects Contrasts“ können wir wieder ignorieren. Die Tabelle 

„Tests of Between-Subjects Effects“ ebenfalls, da sie uns ohne Zwischensubjektfaktoren keine 

inhaltlich interessanten Ergebnisse liefert. 
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Im Abschnitt „Estimated Marginal Means“ finden wir die Ergebnisse für unsere angeforderten 

paarweisen Vergleiche. In der Tabelle „Estimates“ finden wir Punkt- und Intervallschätzungen für die 

auf Basis der vier Stichproben ermittelten Populationsmittelwerte. In der Tabelle „Pairwise 

Comparisons“ finden wir paarweise Tests für Gleichheit der jeweiligen Populationsmittelwerte. Die p-

Werte und Konfidenzniveaus der Konfidenzintervalle für die Mittelwertdifferenzen sind hier jeweils 

nach der Methode korrigiert, die wir angefordert haben; in unserem Fall also nach Bonferroni. Wir 

sehen, dass sich die AV für den ersten und den letzten Messzeitpunkt von allen anderen Messzeitpunkten 

signifikant unterscheiden (p < .001). Die AV zu den Messzeitpunkten 2 und 3 unterscheiden sich 

allerdings nicht voneinander (p = .766). Die Tabelle „Multivariate Tests“ können wir auch hier wieder 

ignorieren. 

Schließlich bekommen wir auch unsere angeforderte graphische Darstellung inklusive der 

gewünschten 95%-KI (die numerischen Werte für diese haben wir in der Tabelle „Estimates“ etwas 

weiter oben gegeben), siehe Abbildung 8.4. Auch an dieser Darstellung erkennen wir, dass die Annahme 

einer Verringerung der Depressionswerte über den Therapieverlauf ganz plausibel erscheint. 

 

Abbildung 8.4. Graphische Darstellung der mittleren Depressionsniveaus und derer 95%-KI über die 

vier Messzeitpunkte. 
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Ergebnisbericht 

Ein Ergebnisbericht für diese Ergebnisse könnte wie folgt aussehen: „Da die Voraussetzung der 

Sphärizität verletzt war (p = .043), werden im Folgenden Huynh-Feldt-korrigierte Werte berichtet. Der 

Messzeitpunkt hat einen signifikanten Einfluss auf den Depressionswert, F(2.86,283.40) = 146.84, p < 

.001, 𝜂𝑝
2 = .60, d.h. 60% der Variabilität im Depressionswert können durch den Messzeitpunkt erklärt 

werden. Post-hoc Tests mit p-Wert-Korrektur für multiple Vergleiche gemäß Bonferroni ergaben 

zudem, dass sich die Depressionswerte zu Messzeitpunkt 1 und 4 von den Depressionswerten zu allen 

anderen Messzeitpunkten signifikant unterscheiden (p < .001), während sich die Depressionswerte zu 

den Messzeitpunkten 2 und 3 nicht signifikant voneinander unterscheiden (p = .766). Deskriptive 

Statistiken sind in Tabelle 8.1 gegeben. Der Verlauf der mittleren Depressionswerte sowie derer 95%-

KI über die Messzeitpunkte hinweg ist in Abbildung 8.4 dargestellt.“ 

Tabelle 8.1 

Deskriptive Statistiken 

Messzeitpunkt M SD n 

1 24.10 4.87 100 

2 15.28 4.05 100 

3 14.35 4.27 100 

4 10.11 5.58 100 

Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung in SPSS 

Gegeben sind Leistungsindizes von 26 (fiktiven) Personen, die an einem Aerobic-Kurs teilgenommen 

haben. Bei diesem Kurs wurde an unterschiedlichen Tagen unter unterschiedlichen Bedingungen 

trainiert. Zu einem Zeitpunkt wurde ohne Musik und mit 2kg-Hanteln, zu einem anderen Zeitpunkt mit 

Musik und mit 2kg-Hanteln, wieder zu einem anderen Zeitpunkt ohne Musik und mit 5kg-Hanteln, und 

zu einem vierten Zeitpunkt mit Musik und mit 5kg-Hanteln trainiert. Die Forschungsfrage lautete: Wie 

wirkt sich Musik und das Gewicht der verwendeten Hanteln auf die Leistung von Teilnehmer:innen in 

einem Aerobic-Kurs aus? 
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Da sowohl für den Faktor Musik als auch für den Faktor Gewicht jeweils 2 Stufen vorliegen, 

handelt es sich in diesem Fall um eine zweifaktorielle Varianzanalyse mit Messwiederholung mit einem 

2x2 Design (d.h. 2 Faktoren mit jeweils 2 Stufen). Es handelt sich in beiden Fällen um 

Messwiederholungsfaktoren, da die Leistung für jede Person für jede Stufe jeden Faktors erhoben 

wurde. Die Daten für dieses Beispiel finden sich in der Datei „Kap8daten2.sav“, die Sie in dem 

elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument 

finden, das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Um eine entsprechende Varianzanalyse in SPSS durchzuführen, wählen wir wieder Analyze >> 

General Linear Model >> Repeated Measures… aus. Dort müssen wir jetzt allerdings zwei 

Messwiederholungsfaktoren definieren. Dazu geben wir dem ersten erst einmal einen Namen, z.B. 

„Musik“, und geben bei „Number of Levels“ die Zahl 2 an, da der Faktor 2 Stufen hat. Dann klicken 

wir auf „Add“. Anschließend definieren wir einen zweiten Faktor. D.h. wir geben ihm einen Namen, 

z.B. „Gewicht“, und geben wiederum an, dass er 2 Stufen hat, und klicken wieder auf „Add“. Die ganze 

Prozedur ist graphisch in Abbildung 8.5 dargestellt (von links nach rechts). Anschließend klicken wir 

auf „Define“. 

 

Abbildung 8.5. Definition von zwei Messwiederholungsfaktoren, jeweils mit 2 Stufen. 

  

https://osf.io/9tcx3/
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Im sich öffnenden Menü müssen wir nun die vier Variablen passend zu den vier Kombinationen 

aus den jeweils 2 Stufen der beiden soeben definierten Faktoren zuordnen. Der erste Faktor ist Musik, 

der zweite Gewicht, d.h. die Kombinationen (1,1) und (1,2) stehen für (leise,2kg) und (leise,5kg) mit 

den Bezeichnungen aus der Datendatei. D.h. wir ziehen zuerst die Variable leise2kg in das Feld „Within-

Subjects Variables (Musik,Gewicht)“ und dort in die erste Zeile „_?_(1,1)“. Dann ziehen wir die 

Variable leise5kg in das Feld „Within-Subjects Variables (Musik,Gewicht)“ und dort in die zweite Zeile 

„_?_(1,2)“. Dann kümmern wir uns um die verbleibenden beiden Variablen, die die Leistungsindizes 

für die beiden Bedingungen enthalten, in denen mit Musik trainiert wurde. D.h. wir ziehen die Variable 

musik2kg in das Feld „Within-Subjects Variables (Musik,Gewicht)“ und dort in die dritte Zeile 

„_?_(2,1)“. Schließlich ziehen wir die Variable musik5kg in das Feld „Within-Subjects Variables 

(Musik,Gewicht)“ und dort in die vierte Zeile „_?_(2,2)“. 

Unter „Plots…“ fordern wir analog zum vorhergehenden Kapitel zwei Grafiken an. Einmal mit 

dem Faktor Musik auf der horizontalen Achse („Horizontal Axis“) und verschiedenen Linien („Separate 

Lines“) für den Faktor Gewicht, und einmal umgekehrt. In beiden Fällen wollen wir aber auch wieder 

Fehlerbalken, die 95%-KI entsprechen. 

Unter „Options…“ fordern wir wieder „Descriptive statistics“ sowie „Estimates of effect size“ 

an. Unter „EM Means…“ wollen wir diesmal alle paarweisen Vergleiche für beide Faktoren. Wir ziehen 

daher „Musik*Gewicht“ in das Feld „Display Means for“, wählen „Compare simple main effects“ und 

wählen dann für die Korrektur von p-Werten und Konfidenzniveaus wieder „Bonferroni“ aus. Dann 

fügen wir wieder alles in eine Syntaxdatei ein und führen die Kommandozeilen aus, woraufhin wieder 

eine umfangreiche Ausgabe erzeugt wird (die hier wiederum nicht abgebildet, sondern nur beschrieben 

wird). Bei dieser beschränken wir uns im Folgenden nur mehr auf die wesentlichen Aspekte. 

Deskriptive Statistiken für alle möglichen Kombinationen aus Faktorstufen finden wir wieder 

in der Tabelle „Descriptive Statistics“. Mauchly Tests bekommen wir im Fall einer zweifaktoriellen 

Varianzanalyse mit Messwiederholung für jeden Faktor sowie für deren Interaktion. Hier sieht das 

Ergebnis allerdings seltsam aus, was aber in diesem Fall tatsächlich so sein sollte. Der Mauchly-Test 

prüft die Gleichheit der Varianzen der Differenzen zwischen mehreren Faktorstufen von abhängigen 
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Variablen (das ist – vereinfacht gesagt – was der Test auf Sphärizität macht). Für jede der beiden 

abhängigen Variablen gibt es allerdings hier nur zwei Faktorstufen, d.h. nur eine Differenzvariable. Bei 

lediglich einer Differenzvariable mit einer dazugehörigen Varianz gibt es aber keine andere 

Differenzvariable bzw. Varianz, mit der diese verglichen werden kann, d.h. der Mauchly-Test kann bei 

zwei Faktorstufen nicht durchgeführt werden. Man kann auch sagen, dass bei zwei Faktorstufen 

Sphärizität immer erfüllt ist (bei nur einer Differenzvariable haben selbstverständlich alle 

Differenzvariablen dieselbe Varianz, da es ja nur eine gibt). Aus diesem Grund ist die Tabelle 

„Mauchly’s Test of Sphericity“ leer bzw. sind alle Korrekturfaktoren gleich Eins. 

In der Tabelle „Tests of Within-Subjects Effects“ finden wir die Ergebnisse unserer Varianz-

analysen (da wir ja zwei Faktoren haben, führen wir wiederum drei Omnibustests durch: einen für jeden 

Faktor und einen für die Interaktion). Im Abschnitt Musik finden wir die Ergebnisse für den Test unseres 

Faktors Musik, d.h. F(1,25) = 7.43, p = .012, 𝜂𝑝
2 = 0.23. Was bedeutet die Effektstärke im Fall mehrerer 

Faktoren? In diesem Fall entspricht die Effektstärke dem Anteil der Varianz, den dieser Faktor aufklären 

kann, der nicht bereits durch andere Faktoren oder die Interaktion aufgeklärt werden kann. Die Heuristik 

nach Cohen (1988) bleibt wie bisher bestehen, hier liegt also ein großer Effekt für den Faktor Musik 

vor. 

Im Abschnitt Gewicht finden wir die Ergebnisse für den Test unseres Faktors Gewicht, d.h. 

F(1,25) = 56.08, p < .001, 𝜂𝑝
2 = 0.69. Auch hier liegt also ein großer Effekt nach Cohen (1988) vor. Im 

Abschnitt „Musik * Gewicht“ finden wir die Ergebnisse für den Test der Interaktion zwischen beiden 

Faktoren, d.h. F(1,25) = 18.57, p < .001, 𝜂𝑝
2 = 0.43. Auch hier liegt also ein großer Effekt nach Cohen 

(1988) vor. 

Im Abschnitt „Estimated Marginal Means“ finden wir schließlich wieder alle Informationen zu 

unseren angeforderten paarweisen Vergleichen. Da wir zwei Faktoren haben, gibt es wieder zwei 

Unterabschnitte. Zuerst finden wir die paarweisen Vergleiche für die zwei Stufen des Faktors Musik für 

jede Stufe des Faktors Gewicht. Wir sehen, dass sich die Leistung nur bei hohem Gewicht zwischen den 

beiden Musikbedingungen signifikant unterscheidet (p < .001). Bei niedrigem Gewicht gibt es keinen 

signifikanten Unterschied (p = .234). Im zweiten Unterabschnitt sehen wir, dass sich die Leistung bei 
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niedrigerem und höherem Gewicht in beiden Musikbedingungen signifikant unterscheidet, sowohl ohne 

Musik (p < .001) als auch mit Musik (p = .001). 

Im Abschnitt „Profile Plots“ finden wir wiederum unsere angeforderten graphischen 

Darstellungen. Diese illustrieren sehr schön, dass beide Faktoren eine Rolle spielen, dass zudem aber 

der Faktor Musik eine erhebliche Rolle nur dann spielt, wenn mit größerem Gewicht trainiert wird, siehe 

Abbildung 8.6. Bei niedrigerem Gewicht unterscheiden sich die mittleren Leistungen kaum (und die 

plausiblen Bereiche überlappen stark). Das entspricht gerade unserem Interaktionseffekt von oben und 

illustriert ein weiteres Mal, weshalb eine einfache Interpretation der Haupteffekte bei bestehender 

Interaktion nicht ohne weiteres möglich ist. 

 

Abbildung 8.6. Mittlere Leistungsindizes für einen Aerobic-Kurs in Abhängigkeit vom Gewicht der 

Hanteln, mit denen trainiert wurde, sowie von der Tatsache, ob mit oder ohne Musik trainiert wurde. 

Fehlerbalken entsprechen 95%-KI. 
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Ergebnisbericht 

Ein Ergebnisbericht für dieses Beispiel könnte wie folgt aussehen: „Im Mittel gibt es einen 

signifikanten Unterschied in der Aerobic-Leistung abhängig davon, ob Musik gespielt wird oder nicht, 

F(1,25) = 7.43, p = .012, ηp
2 = .23. Einen signifikanten Unterschied gibt es auch abhängig vom Gewicht 

der verwendeten Hanteln, F(1,25) = 56.08, p < .001, ηp
2 = .69. Ferner besteht eine signifikante 

Wechselwirkung zwischen den Faktoren Musik und Gewicht der Hanteln, F(1,25) = 18.57, p < .001, ηp
2 

= .43. Um paarweise Unterschiede zu untersuchen wurden post-hoc Tests mit p-Wert-Korrektur für 

multiple Vergleiche gemäß Bonferroni berechnet. Bei 2kg-Hanteln macht es für die Leistung keinen 

signifikanten Unterschied, ob Musik gespielt wird (M = 61.58, SD = 9.70, n = 26 in jeder Bedingung) 

oder nicht (M = 65.00, SD = 10.31), p = .234. Bei 5kg-Hanteln zeigen die Teilnehmer:innen mit Musik 

(M = 50.77, SD = 10.34) eine signifikant höhere mittlere Leistung als ohne Musik (M = 37.23, SD = 

10.86), p < .001. Die Leistung ist mit 2kg-Hanteln immer signifikant höher als mit 5kg-Hanteln, egal ob 

Musik gespielt wird (p = .001) oder nicht (p < .001). Eine graphische Darstellung dieser Ergebnisse 

inklusive 95%-KI für die mittleren Leistungsindizes ist in Abbildung 8.6 gegeben.“ 

Durchführung einer zweifaktoriellen Varianzanalyse mit gemischtem Design in SPSS 

Zur Illustration eines gemischten Designs greifen wir auf einen ähnlichen Datensatz wie oben für die 

einfaktorielle Varianzanalyse mit Messwiederholung zurück. Gegeben sind wiederum Depressions-

werte, dieses Mal allerdings zu drei Messzeitpunkten und von 200 fiktiven Patient:innen, von welchen 

jeweils 100 entweder eine Verhaltenstherapie oder eine Mischung aus verschiedenen Therapien (= 

Therapiemix) in Anspruch genommen haben. Bei den Messzeitpunkten handelt es sich um den Beginn 

der Therapie, sowie sechs und zwölf Wochen nach Beginn der Therapie. Die Fragestellung lautet 

diesmal: Unterscheidet sich die Wirkung der Therapiemethoden abhängig vom zeitlichen Verlauf? Die 

Daten für dieses Beispiel finden sich in der Datei „Kap8daten3.sav“, die Sie in dem elektronischen 

Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem Dokument finden, das Sie 

unter https://osf.io/9tcx3/ herunterladen können. 

In diesem Fall liegt ein sog. gemischtes Modell vor, da es sich nur bei einem der beiden Faktoren 

um einen Messwiederholungsfaktor handelt, nämlich beim Messzeitpunkt, der über drei Stufen verfügt. 

D.h. für jede:n Patient:in liegen drei Depressionswerte zu jeweils einem der drei Messzeitpunkte vor. 

https://osf.io/9tcx3/
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Bei dem anderen Faktor, der Therapieform, handelt es sich hingegen um einen Zwischensubjektfaktor, 

da jede:r Patient:in entweder in der einen Stufe (Verhaltenstherapie) oder in der anderen Stufe 

(Therapiemix) vorliegt. Insgesamt wird also eine zweifaktorielle Varianzanalyse in einem gemischten 

2x3 Design durchgeführt. 

Zur Durchführung wählen wir erst wieder Analyze >> General Linear Model >> Repeated 

Measures… und definieren anschließend unseren 3-stufigen Messwiederholungsfaktor, dem wir z.B. 

wieder den Namen „Messzeitpunkt“ geben. Nach Klick auf „Define“ weisen wir die drei Variablen 

„BDI1“, „BDI2“ und „BDI3“ wieder (in der richtigen Reihenfolge) unseren drei Faktorstufen zu. Zudem 

haben wir in diesem Beispiel noch einen Zwischensubjektfaktor, die Variable Therapie, die wir daher 

in das Feld „Between-Subjects Factor(s)“ ziehen, siehe Abbildung 8.7. 

Unter „Plots…“ fordern wir wieder eine graphische Darstellung unserer Resultate an, mit dem 

Messzeitpunkt auf der horizontalen Achse und den Therapieformen in unterschiedlichen Linien (dies 

sollte für diesen Fall in dieser einen Form genügen, um unsere Fragestellung zu erhellen). 

Selbstverständlich wollen wir neben der Punktschätzung (Mittelwert) auch eine Darstellung plausibler 

Bereiche durch entsprechende Konfidenzintervalle. 

Unter „Options…“ fordern wir dieses Mal neben „Descriptive statistics“ und „Estimates of 

effect size“ auch noch „Homogeneity tests“ an, da wir auch einen Zwischensubjektfaktor vorliegen 

haben. Unter „EM Means…“ verlangen wir wieder paarweise Vergleiche für beide Therapieformen 

bzw. zu allen Messzeitpunkten, indem wir „Therapie * Meszeitpunkt“ in das Feld „Display Means for“ 

ziehen, „Compare simple main effects“ anwählen und die Bonferroni-Methode zur Korrektur von p-

Werten und Konfidenzniveaus auswählen. 

Nach Ausführen der entsprechenden Kommandozeilen in der Syntaxdatei bekommen wir 

wieder eine sehr umfangreiche Ausgabe, von der wir hier wieder nur die wesentlichen Bestandteile 

erläutern. In der Tabelle „Descriptive Statistics“ haben wir wieder deskriptive Statistiken in Form von 

Mittelwerten und Standardabweichungen für alle Kombinationen an Faktorstufen gegeben. 

In der Tabelle „Box’s Test of Equality of Covariance Matrices“ haben wir einen Test auf 

Gleichheit der Kovarianzmatrizen für alle Faktorstufen unseres Zwischensubjektfaktors. Diese 
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Voraussetzung ist im Fall eines gemischten Designs zusätzlich zu prüfen. Wie bei Levenes Test (siehe 

unten) gilt: ist dieser Test signifikant (üblicherweise mit 𝛼 = .01) kann davon ausgegangen werden, dass 

die Voraussetzung nicht erfüllt ist. In diesem Fall müsste dann auf ein sog. robustes Verfahren 

zurückgegriffen werden (siehe z.B. Mair & Wilcox, 2020), die im Rahmen dieser Übungen aber nicht 

behandelt werden. Im vorliegenden Fall ist der Box-Test nicht signifikant, p = .996, und wir können 

ohne weitere Umschweife mit der Überprüfung der Sphärizität weitermachen und sehen, dass auch der 

Mauchly-Test nicht signifikant ist, p = .556. Bleibt noch die Überprüfung der Varianzhomogenität in 

der Tabelle „Levene’s Test of Equality of Error Variances“. Auch hier können wir erleichtert aufatmen, 

da Levenes Test zu keinem der drei Messzeitpunkte signifikant ist, p > .05. 

Damit können wir schließlich zu den eigentlichen Ergebnissen unserer Varianzanalyse kommen. 

Einen Teil davon finden wir wieder in der Tabelle „Tests of Within-Subjects Effects“. Dort sehen wir, 

dass wir einen signifikanten Haupteffekt für den Faktor Messzeitpunkt haben, F(2, 396) = 2897.67, p < 

.001, 𝜂𝑝
2 = .94, also wiederum einen (sehr) großen Effekt des Messzeitpunkts. Wir sehen auch, dass eine 

signifikante Interaktion zwischen dem Messzeitpunkt und der Therapieform besteht, F(2, 396) = 26.25, 

p < .001, 𝜂𝑝
2 = .12, d.h. mit einem mittleren Effekt gemäß Cohens Heuristik (1988). Dies beantwortet 

im Prinzip schon unsere Forschungsfrage: Die Wirkung der Therapieformen scheint sich in der Tat 

abhängig vom Zeitverlauf zu unterscheiden! 

 

Abbildung 8.7. Definition einer Varianzanalyse mit gemischtem Design in SPSS. 
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Allerdings wollen wir auch noch wissen, ob sich die mittleren Depressionswerte für die beiden 

Therapieformen ohne Rücksicht auf den Messzeitpunkt voneinander unterscheiden. D.h. wir sind auch 

daran interessiert, ob es einen Haupteffekt für die Therapieform gibt. Diese Frage kann uns nun die 

Tabelle „Tests of Between-Subjects Effects“ erhellen, die für uns nun auch endlich interessant geworden 

ist, da wir mit der Therapieform einen Zwischensubjektfaktor vorliegen haben. In dieser Tabelle können 

wir ablesen, dass es auch einen signifikanten Haupteffekt für die Therapieform gibt, F(1, 198) = 168.31, 

p < .001, 𝜂𝑝
2 = .46, d.h. ein großer Effekt gemäß Cohens Heuristik (1988). 

Im Abschnitt „Estimated Marginal Means“ finden wir wieder sämtliche Informationen zu den 

angeforderten paarweisen Mittelwertvergleichen. Hier erkennen wir z.B. in der (ersten) Tabelle 

„Pairwise Comparisons“ (diese Tabelle gibt es ja wieder zweimal), dass sich die mittleren 

Depressionswerte für Verhaltenstherapie und Therapiemix zum ersten Messzeitpunkt nicht signifikant 

unterscheiden (p = .058), während sie es für den Zeitpunkt 2 und 3 jeweils tun (p < .001). Dies macht 

auch durchaus Sinn, da ja der erste Zeitpunkt den Therapiebeginn bezeichnet und sich da zufällig 

gezogene Stichproben depressiver Patient:innen in ihren mittleren Depressionswerten nur selten stark 

unterscheiden sollten, da der Populationsmittelwert ja ein- und derselbe sein sollte. Zu den anderen 

beiden Zeitpunkten sehen wir aber, dass sich zwischen den beiden Therapieformen eine Lücke auftut, 

was es ganz so aussehen lässt, als würde sich der Therapiemix besser auf die Depressionssymptomatik 

auswirken als die Verhaltenstherapie alleine. Mit zunehmender Zeit scheint diese Lücke auch größer zu 

werden, die Bereiche für plausible Werte überlappen nicht, d.h. es scheint auch unwahrscheinlich, dass 

es sich bei der Zunahme des Unterschieds nur um eine Zufallsschwankung handelt. 

In der zweiten Tabelle mit der Überschrift „Pairwise Comparisons“ sehen wir schließlich noch, 

dass sich die mittleren Depressionswerte in beiden Therapieformen zwischen allen drei Zeitpunkten 

signifikant unterscheiden (p < .001); in beiden Therapieformen nimmt die Depressionssymptomatik also 

über die Zeit hinweg ab. Diesen Verlauf sowie die oben konstatierte Tatsache der sich öffnenden Lücke 

zwischen den beiden Therapieformen sehen wir auch in der graphischen Darstellung der Resultate in 

Abbildung 8.8 noch einmal schön illustriert. Der Interaktionseffekt zeitigt sich in diesem Beispiel also 

insofern, dass die Abnahme der Depressionssymptomatik über die Zeit hinweg je nach Therapieform 

unterschiedlich stark ausgeprägt ist. 
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Abbildung 8.8. Mittlere Depressionswerte über die drei Messzeitpunkte für beide Therapieformen. 

Fehlerbalken entsprechen 95%-KI. 

Ergebnisbericht 

Ein Ergebnisbericht für dieses Beispiel könnte wie folgt aussehen: „Weder der Box Test (p = .996) noch 

Mauchlys Test (p = .556) noch Levenes Tests auf jeder Faktorstufe des Messwiederholungsfaktors 

(jeweils p > .05) waren signifikant, weshalb davon ausgegangen wird, dass die Voraussetzungen für 

eine Varianzanalyse mit einem gemischten Design erfüllt sind. Die mittleren Depressionswerte 

unterscheiden sich signifikant für die drei Messzeitpunkte, F(2, 396) = 2897.67, p < .001, 𝜂𝑝
2 = .94, was 

einem großen Effekt gemäß Cohen (1988) entspricht. Die mittleren Depressionswerte unterscheiden 

sich zudem signifikant zwischen den beiden Therapieformen, F(1, 198) = 168.31, p < .001, 𝜂𝑝
2 = .46, 

was ebenfalls einem großen Effekt gemäß Cohens Heuristik (1988) entspricht. Schließlich gibt es eine 

signifikante Interaktion zwischen Therapieform und Messzeitpunkt, F(2, 396) = 26.25, p < .001, 𝜂𝑝
2 = 

.12, was gemäß Cohens Heuristik (1988) einem mittleren Effekt entspricht. Für paarweise post-hoc 

Vergleiche werden gemäß Bonferroni korrigierte p-Werte berichtet. Für beide Therapieformen 

unterscheiden sich die mittleren Depressionswerte signifikant voneinander zwischen allen 

Messzeitpunkten (p < .001). Insbesondere nehmen die Depressionswerte für beide Therapieformen über 
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die Zeit hinweg ab. Zu Messzeitpunkt 1, d.h. zu Beginn der jeweiligen Therapie, unterscheiden sich die 

mittleren Depressionswerte für die beiden Therapieformen nicht signifikant voneinander (p = .058), 

während sie sich für die anderen beiden Messzeitpunkte signifikant voneinander unterscheiden (p < 

.001). Insbesondere sind die mittleren Depressionswerte jeweils niedriger für den Therapiemix als für 

die Verhaltenstherapie und der Unterschied nimmt in der Zeit zu. Deskriptive Statistiken für alle 

Kombinationen aus Therapieform und Messzeitpunkt sind in Tabelle 8.2 zu finden. Eine graphische 

Darstellung von Punkt- und Intervallschätzungen für die mittleren Depressionswerte zu den einzelnen 

Messzeitpunkten für beide Therapieformen ist in Abbildung 8.8 gegeben.“ 

Tabelle 8.2 

Deskriptive Statistiken 

Messzeitpunkt Therapieform M SD n 

1 Verhaltenstherapie 38.91 2.89 100 

 Therapiemix 38.11 3.04 100 

2 Verhaltenstherapie 29.46 2.77 100 

 Therapiemix 26.43 2.81 100 

3 Verhaltenstherapie 18.39 3.00 100 

 Therapiemix 13.27 3.06 100 

Stichprobenplanung 

Eine Stichprobenplanung für die Omnibustests der varianzanalytischen Modelle mit Messwiederholung 

ist noch etwas komplizierter als im Fall ohne Messwiederholung. Da die statistischen Hypothesen der 

Omnibustests ohnehin nur selten inhaltliche Forschungsfragen beantworten können (Bühner et al., 

2025), verzichten wir hier auf die Beschreibung. 

Für einfache Parameterdifferenzen kann auf die besprochenen Verfahren für Hypothesentests 

und Konfidenzintervalle im Zwei-Stichprobenfall zurückgegriffen werden (Bühner et al., 2025). 
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Übungsaufgaben 

Alle im Folgenden benötigten Datendateien können Sie in dem elektronischen Ergänzungsmaterial 

(Engl.: electronic supplementary material) zu diesem Dokument finden, das Sie unter 

https://osf.io/9tcx3/ herunterladen können. 

Beispiel 8.1 

Was gehört zu den Voraussetzungen der Varianzanalyse mit vollständiger Messwiederholung (d.h. kein 

gemischtes Design)? 

(a) Die UV muss intervallskaliert sein. 

(b) Die Voraussetzung der Compound Symmetry muss erfüllt sein. 

(c) Die Kovarianz der Personeneffekte und der Fehler muss Null sein. 

(d) Die AV muss auf jeder Stufe aller Messwiederholungsfaktoren gleichverteilt sein. 

Beispiel 8.2 

Was gehört zu den Voraussetzungen der Varianzanalyse mit gemischtem Design? 

(a) Varianzhomogenität der AV bezüglich des Zwischensubjektfaktors. 

(b) Gleichheit der Kovarianzmatrizen über die Faktorstufen des Innersubjektfaktors. 

(c) Gleichheit der Kovarianzmatrizen über die Faktorstufen des Zwischensubjektfaktors. 

(d) Varianzhomogenität der AV bezüglich des Innersubjektfaktors. 

Beispiel 8.3 

Geben Sie für jede der folgenden Aussagen an, ob sie richtig oder falsch ist. 

Nr. Aussage R/F 

1) Bei der Effektstärke 𝜂𝑝
2 werden Werte ab 0.01/0.06/0.14 gemäß Cohen (1988) als 

klein/mittel/groß bezeichnet. 

 

2) Beim Box Test handelt es sich um einen Test der Sphärizität.  

3) Die Greenhouse-Geisser-Korrektur ist zu konservativ, weshalb besser die Huynh-

Feldt-Korrektur verwendet werden sollte. 

 

4) Die Gleichheit der Kovarianzmatrizen kann mit Mauchlys Test überprüft werden.  

https://osf.io/9tcx3/
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Beispiel 8.4 

Ein (fiktiver) Nationalparkprogramm möchte sein Veranstaltungsprogramm evaluieren. Insbesondere 

soll herausgefunden werden, ob sich durch die Teilnahme am Programm, das Umweltverhalten von 

Teilnehmer:innen kurz- bzw. langfristig ändert. Dazu wird allen Teilnehmer:innen über einen 

bestimmten Zeitraum u.a. ein Fragebogen zum Umweltverhalten vor Beginn sowie ein Monat und ein 

Jahr nach einer entsprechenden Veranstaltung ausgehändigt. Bei der Skala zum Umweltverhalten kann 

jede Person 0 bis maximal 24 Punkte erhalten. Die Fragestellung lautet: Unterscheidet sich das 

Umweltverhalten von Teilnehmer:innen zu diesen drei Zeitpunkten und falls ja, wie? 

Sie finden die Daten für dieses Beispiel in der Datei „Kap8UE4.sav“. Wählen Sie ein 

angemessenes statistisches Verfahren, um die Fragestellung auf Basis der gegebenen Daten zu 

beantworten, und fertigen Sie einen entsprechenden Ergebnisbericht an. 

Beispiel 8.5 

Ein Psychologe erforscht wie sich die Bedeutung des Lernmaterials auf die Gedächtnisleistung auswirkt. 

Dazu lässt er 50 Studierende sowohl 17 Paare sinnloser Silben sowie 17 Paare aus deutschen und 

japanischen Begriffen erlernen. Die Behaltensleistung fragt der Forscher danach zu drei Zeitpunkten ab: 

(i) eine halbe Stunde nach dem Erlernen der Begriffe, (ii) einen Tag später, (iii) eine Woche später. Die 

Forschungsfrage lautet: Hängt die Zeitabhängigkeit der Behaltensleistung von der Bedeutung des 

Lernmaterials ab? 

Sie finden die Daten für dieses Beispiel in der Datei „Kap8UE5.sav“. Wählen Sie ein 

angemessenes statistisches Verfahren, um die Fragestellung auf Basis der gegebenen Daten zu 

beantworten, und fertigen Sie einen entsprechenden Ergebnisbericht an. 

Beispiel 8.6 

Ein Patient leidet neuerdings an erhöhtem Blutdruck und seine Medikation muss so eingestellt werden, 

dass der Ruheblutdruck sich stabil in einem Normalbereich befindet, d.h. der systolische (= der 

obere/höhere) Blutdruckwert sollte sich zwischen 115 und 125 mmHg und der diastolische (= der 

untere/niedrigere) Wert zwischen 70 und 80 mmHg befinden. 
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In der Datei „Kap8UE6.sav“ finden Sie Blutdruckwerte für diesen Patienten, die über längere 

Zeiträume bei drei verschiedenen Medikationen sowohl am linken als auch am rechten Arm gemessen 

wurden. Bei den drei verschiedenen Medikationen handelt es sich um Gabe von (i) 8 mg Candesartan 

abends und 8 mg Candesartan morgens, (ii) 8 mg Candesartan abends und 16 mg Candesartan morgens, 

(iii) 8 mg Candesartan sowie 5 mg Amlodipin abends und 16 mg Candesartan morgens. 

Sie können für dieses Beispiel davon ausgehen, dass die Voraussetzungen für Varianzanalysen 

mit Messwiederholung erfüllt sind (Sie können sich selbst davon überzeugen, dass sie es eigentlich nicht 

sind, aber da wir für diesen Fall keine angemessenen robusten Verfahren im Rahmen dieser Übungen 

besprechen, können Sie für dieses Beispiel so tun, als wäre alles in Ordnung). Verwenden Sie ferner ein 

Signifikanzniveau von 𝛼 = .05 sowie ein Konfidenzniveau von .95 für dieses Beispiel. 

Bilden Sie zuerst jeweils einen mittleren systolischen und diastolischen Blutdruckwert aus den 

beiden Werten für die beiden Arme. Untersuchen Sie anschließend, ob die beiden Blutdruckwerte sich 

für die drei Medikationen unterscheiden, und falls ja wie. Erstellen Sie einen angemessenen 

Ergebnisbericht und berichten Sie auch plausible Werte für die beiden Blutdruckwerte für die drei 

Medikationen. Welche Medikation erscheint Ihnen aufgrund Ihrer Resultate für diesen Patienten am 

passendsten? 

Beispiel 8.7 

Eine (fiktive) Forschungsgruppe möchte wissen wie sich unterschiedliche Lehrmethoden auf die 

Entwicklung von Statistik-Expertise auswirken. Dazu werden jeweils 120 Studierende mit zwei 

unterschiedlichen Lehrmethoden ein Semester lang in Statistik unterrichtet. In einer Gruppe wird 

traditionelle Lehre eingesetzt (Powerpoint-Vortrag und schriftliche Klausur), in der anderen Gruppe 

wird das flipped-classroom Konzept verwendet (eigenständige Aneignung der Inhalte zu Hause und 

gemeinsame Diskussion und praktische Übungen in den jeweiligen Unterrichtseinheiten). 

Die Statistikkenntnisse werden zu drei Zeitpunkten erhoben. Eine Überprüfung zu Beginn der 

Lehrveranstaltung soll das Vorwissen der Studierenden erfassen. Eine Überprüfung nach Ende der 

Lehrveranstaltung soll den Lernerfolg mit der jeweiligen Methode erfassen. Eine dritte Überprüfung ein 

halbes Jahr nach der zweiten Überprüfung soll Rückschlüsse darauf erlauben wie gut die Inhalte mit den 
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jeweiligen Methoden über einen längeren Zeitraum behalten werden. Für die drei Überprüfungen wird 

jeweils derselbe Leistungstest verwendet. Dieser ergibt als Maß für die Leistung eine Zahl zwischen 0 

und 100. 

Die Daten für das Experiment sind in der Datei „Kap8UE7.sav“ enthalten. Die Variable ID 

enthält den Proband:innencode. Die Variable Lernmethode gibt an, in welcher der beiden Gruppen sich 

die jeweiligen Studierenden befanden (0 = traditionelle Lehrmethode, 1 = flipped classroom). Die 

Variablen t1, t2 und t3 beinhalten die Ergebnisse der Statistik-Leistungstests jeweils zu den Zeitpunkten 

am Beginn der Lehrveranstaltung (t1), an deren Ende (t2) und ein halbes Jahr nach Ende der 

Lehrveranstaltung (t3). 

Führen Sie eine Varianzanalyse inklusive paarweiser post-hoc Vergleiche durch um die unten 

angegebenen Fragen zu beantworten. Begründen Sie Ihre Antworten dabei jeweils durch Angabe der 

entsprechenden statistischen Kennwerte. Berichten Sie bei statistischen Ergebnissen immer alle 

relevanten Kennwerte (Teststatistiken, Freiheitsgrade, p-Werte, Effektstärken). Mittelwerte und 

Standardabweichungen können Sie entweder im Text anführen oder in APA-konformen Tabellen 

angeben und auf diese verweisen. Berichten Sie Ihre Resultate gemäß APA-Richtlinien. Das 

Signifikanzniveau soll für alle statistischen Tests zu 0.05 gewählt werden und für post-hoc Tests unter 

Angabe des Verfahrens zur Korrektur angemessen korrigiert werden. 

(a) Welche spezifische Form der Varianzanalyse ist zu wählen, um zu prüfen, ob sich die 

resultierenden mittleren Leistungen der Studierenden für die beiden Lehrmethoden zu 

irgendeinem der drei Zeitpunkte unterscheiden? Wie viele Faktoren liegen vor und 

welcher Art sind die Faktoren? Sind die Voraussetzungen (abgesehen von der 

Normalverteilung der abhängigen Variablen, von der Sie für diese Aufgabe ausgehen 

können) für das statistische Verfahren erfüllt? Begründen Sie Ihre Antwort. 

(b) Unterscheiden sich die Ergebnisse im Leistungstest signifikant zwischen den 

Testzeitpunkten? 

(c) Unterscheiden sich die Ergebnisse im Leistungstest signifikant zwischen den beiden 

Lehrmethoden? 
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(d) Gibt es eine Interaktion zwischen Lehrmethode und Zeitpunkt? Wenn ja, welche Art 

der Interaktion liegt vor (begründen Sie Ihre Wahl)? 

(e) Untersuchen Sie mittels paarweisen Mittelwertvergleichen, ob und wie sich die beiden 

Lehrmethoden zu den einzelnen Zeitpunkten voneinander unterscheiden bzw. wie sich 

die Ergebnisse zu den unterschiedlichen Zeitpunkten in der jeweiligen Lehrmethode 

voneinander unterscheiden. Berichten Sie für jeden Mittelwertvergleich auch dessen 

statistische Signifikanz. 

Beispiel 8.8 

Eine Gruppe von (fiktiven) Forscher:innen untersuchte die folgende Fragestellung: Wie wirken sich 

unterschiedliche Therapieformen (kognitive Verhaltenstherapie und achtsamkeitsbasierte Therapie) und 

der Zeitpunkt (vor und nach der Therapie) auf die Depressionsschwere bei Erwachsenen aus? Die 

Depressionsschwere wurde für jeweils 50 Personen für jede der beiden Therapieformen mit Becks 

Depressionsinventar erhoben und ergibt eine Zahl von 0 bis 63 für jede Person und jeden Zeitpunkt. Die 

entsprechenden Daten befinden sich in der Datei „Kap8UE8.sav“. 

(a) Welches Verfahren ist zur inferenzstatistischen Untersuchung der Daten für die oben 

angegebene Fragestellung geeignet? Erläutern/beschreiben Sie kurz die Bestandteile des 

Verfahrens (Was ist/sind UV/AV bzw. Faktoren und Art der Faktoren?). 

(b) Analysieren Sie die Daten in SPSS und verfassen Sie einen entsprechenden Ergebnisbericht. 

(c) Wie würden Sie das Ergebnis inhaltlich interpretieren (in 1-2 Sätzen)? 

Hinweis: Sie können für dieses Beispiel davon ausgehen, dass die Voraussetzungen für das benötigte 

Verfahren erfüllt sind (d.h., Sie müssen keine Voraussetzungsprüfungen durchführen). 

Beispiel 8.9 

Eine (fiktive) Forscherin fragt sich, wie das Spielen von bestimmten Computerspielen mit moralischem 

Verhalten und dem Bedürfnis nach kognitiven Anforderungen zusammenhängt. Um dieser Frage 

nachzugehen, rekrutiert sie insgesamt 300 Versuchspersonen. Je 100 von diesen Versuchspersonen 

spielen entweder besonders gerne (i) Egoshooter, (ii) fantasiebasierte Computerrollenspiele oder (iii) 

Aufbau-Strategiespiele. Alle Versuchspersonen füllen einen Moralfragebogen aus, bei dem sie zwischen 
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0 und 100 Punkten erreichen können. Eine höhere Punktezahl bedeutet dabei moralischeres 

Antwortverhalten. Zudem füllen alle Versuchspersonen einen Fragebogen zu ihrem Bedürfnis nach 

kognitiven Anforderungen aus, bei dem sie wiederum zwischen 0 und 100 Punkten erreichen können. 

Eine höhere Punktezahl bedeutet ein größeres Bedürfnis nach kognitiven Anforderungen. Die erhobenen 

Daten und Gruppenzugehörigkeiten finden sich in der Datei „Kap8UE9.sav“. 

Da sich die Forscherin hinsichtlich statistischer Auswertungen nicht mehr ganz sicher ist, zieht 

sie für die Auswertung ChatGPT zurate. Aus dieser Zusammenarbeit ergibt sich der folgende 

Ergebnisbericht. Dieser ist leider in mehreren Punkten fehlerhaft. Identifizieren und korrigieren Sie die 

Fehler. Streichen Sie dazu die fehlerhaften Stellen durch und ersetzen Sie sie durch die korrekten 

Angaben. 

Hinweis: Es müssen keine Formulierungen geändert werden. Alle Fehler lassen sich durch 

Änderung/Ersetzung einzelner Wörter oder Zahlen beheben. 

Ergebnisbericht: Um Unterschiede im moralischen Verhalten und dem Bedürfnis nach kognitiven 

Anforderungen je nach Spielegenre zu untersuchen, wurde eine zweifaktorielle Varianzanalyse ohne 

Messwiederholung durchgeführt. Dabei wies der Zwischensubjektfaktor „Spielegenre“ zwei 

Faktorstufen auf. Der Innersubjektfaktor berücksichtigte, um welchen der beiden Fragebögen es sich 

handelte. Die Interaktion zwischen den beiden Faktoren lässt darauf schließen, ob es zwischen den 

Spielegenres Unterschiede im Antwortverhalten auf die beiden Fragebögen gibt. 

Die Varianzanalyse ergab einen signifikanten Haupteffekt für die Art des Fragebogens, 

F(1,297) = 9.64, p = .031, ηp
2 = .03. Es ergab sich auch ein signifikanter Haupteffekt für das 

Spielegenre, F(2,297) = 27.21, p < .001, ηp
2 = .16. Die Interaktion zwischen Fragebogenart und 

Spielegenre war allerdings nicht signifikant, F(2,297) = 19.42, p = .116, ηp
2 = .12, weshalb die Effekte 

der beiden Faktoren nicht unabhängig voneinander interpretiert werden können. 

Bei Spieler:innen, die besonders gerne Egoshooter spielen, wurden sowohl beim 

Moralfragebogen (M = 49.90, SD = 9.09) als auch beim Kognitionsfragebogen (M = 51.34, SD = 9.52) 

vergleichsweise geringe Werte erreicht, die sich auch nicht signifikant voneinander unterschieden, 

p = .188. Auch die Punktwerte der Spieler:innen, die besonders gerne Strategiespiele spielen, waren sehr 
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ähnlich bei Moralfragebogen (M = 51.34, SD = 9.52) und bei Kognitionsfragebogen (M = 58.38, 

SD = 9.45), fielen aber vergleichsweise deutlich höher aus und unterschieden sich in beiden Fällen 

signifikant von den jeweiligen Werten der Egoshooter-Spieler:innen (p < .001). Rollenspieler:innen 

erzielten hingegen ganz andere Werte im Moralfragebogen (M = 59.87, SD = 9.01) als im 

Kognitionsfragebogen (M = 52.41, SD = 9.43), der Unterschied war nicht signifikant (p < .001). 

Rollenspieler:innen erzielten im Kognitionsfragebogen ähnliche Werte wie Egoshooter-Spieler:innen 

(p = .631), während sie im Moralfragebogen ähnliche Werte wie Strategie-Spieler:innen erzielten 

(p > .999). 

Beispiel 8.10 

Eine (fiktive) Forscherin fragt sich, wie die allgemeine Selbstwirksamkeit mit dem Lernergebnis in 

spielerischen und nichtspielerischen Lernumgebungen zusammenhängt. In einer Vorerhebung wird die 

allgemeine Selbstwirksamkeit von 232 Versuchspersonen erfasst. Von allen Versuchspersonen werden 

daraufhin diejenigen 160 ausgewählt, deren Selbstwirksamkeit entweder besonders hoch oder besonders 

niedrig war. Die 80 Versuchspersonen mit besonders niedriger Selbstwirksamkeit werden der Gruppe 

„niedrig“ zugeteilt, die 80 Versuchspersonen mit besonders hoher Selbstwirksamkeit der Gruppe „hoch“ 

(die Versuchspersonen selbst wissen zu keinem Zeitpunkt über die Gruppenzugehörigkeit Bescheid). 

Beide Gruppen beschäftigen sich zu zwei verschiedenen Zeitpunkten mit einer Lernaufgabe (eine 

Fremdsprache erlernen). Zu einem Zeitpunkt beschäftigen sie sich mit einer spielerischen Version der 

Lernaufgabe (mittels des Online-Tools Duolingo), zum anderen Zeitpunkt mit einer nichtspielerischen 

Version (üblicher Sprachunterricht). Die Zuweisung der spielerischen und nichtspielerischen Varianten 

zu den beiden Zeitpunkten erfolgt randomisiert. Direkt nach den Lerneinheiten wird jeweils ein Test 

zum jeweiligen Lernfortschritt durchgeführt, der das Lernergebnis auf einer Skala von 0 bis 100 angibt. 

Die erhobenen Daten und Gruppenzugehörigkeiten finden sich in der Datei „Kap8UE10.sav“. 

Da sich die Forscherin hinsichtlich statistischer Auswertungen nicht mehr ganz sicher ist, zieht 

sie für die Auswertung ChatGPT zurate. Aus dieser Zusammenarbeit ergibt sich der folgende 

Ergebnisbericht. Dieser ist leider in mehreren Punkten fehlerhaft. Identifizieren und korrigieren Sie die 
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Fehler. Streichen Sie dazu die fehlerhaften Stellen durch und ersetzen Sie sie durch die korrekten 

Angaben. 

Hinweis: Es müssen keine Formulierungen geändert werden. Alle Fehler lassen sich durch 

Änderung einzelner Wörter oder Zahlen beheben. 

Ergebnisbericht: Zur statistischen Analyse wurde eine zweifaktorielle Varianzanalyse ohne 

Messwiederholung (gemischtes Design) durchgeführt. Beim zweistufigen Innersubjektfaktor handelt es 

sich um die Variable, die angibt, ob es sich um eine Person mit besonders niedriger oder hoher 

Selbstwirksamkeit handelt. Beim ebenfalls zweistufigen Zwischensubjektfaktor handelt es sich um die 

Variable, die angibt, ob es sich um das Lernergebnis zur Spiel- oder zur Nichtspielversion der 

Lernaufgabe handelt. 

Es ergibt sich ein (mit 𝛼 = .05) signifikanter Haupteffekt für die Selbstwirksamkeit (niedrig oder 

hoch), F(1,158) = 0.28, p = .002, ηp
2 = .60. Es ergibt sich ein signifikanter Haupteffekt für die Version 

der Lernaufgabe (Spiel oder Nichtspiel), F(1,158) = 0.10, p = .001, ηp
2 = .75. Es ergibt sich eine 

signifikante Interaktion zwischen den beiden Faktoren, F(1,158) = 3769.10, p < .001, ηp
2 = .96. 

Paarweise post-hoc Vergleiche mit gemäß Bonferroni korrigierten p-Werten ergeben, dass 

Personen mit niedriger Selbstwirksamkeit in der Spielversion (M = 45.56, SD = 9.81) signifikant höhere 

Ergebnisse als in der Nichtspielversion (M = 40.71, SD = 9.74) erzielen, p < .001. Bei Personen mit 

hoher Selbstwirksamkeit ist es gerade umgekehrt: Diese erzielen in der Spielversion (M = 41.44, 

SD = 8.01) signifikant niedrigere Ergebnisse als in der Nichtspielversion (M = 46.34, SD = 8.18), 

p < .001. Zudem erzielen in der Spielversion Personen mit niedriger Selbstwirksamkeit signifikant 

höhere Ergebnisse als Personen mit hoher Selbstwirksamkeit, p < .001. In der Nichtspielversion 

hingegen erzielen Personen mit niedriger Selbstwirksamkeit signifikant niedrigere Ergebnisse als 

Personen mit hoher Selbstwirksamkeit, p < .001. 
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Beispiel 8.11 

Es wird ein Experiment durchgeführt, mit dem die Wirkung von Silikonen in Haarpflegeprodukten auf 

die Haarqualität geprüft werden soll. Für das Experiment werden 160 Personen rekrutiert, die bislang 

keine Haarpflegeprodukte mit Silikonen verwendet haben. Die Personen werden mit 

Haarpflegeprodukten mit Silikonen ausgestattet und gebeten, diese streng nach Gebrauchsanweisung 

für zwei Monate zu verwenden. Danach sollen weitere 10 Monate lang keine Haarpflegeprodukte mit 

Silikonen verwendet werden. Die Haarqualität wird für alle Personen von einer Gruppe von 

Expert:innen auf einer Skala von 0 bis 100 zu drei Zeitpunkten beurteilt: (i) zu Beginn des Experiments, 

(ii) zwei Monate nach Beginn des Experiments, (iii) ein Jahr nach Beginn des Experiments. 

Die Daten sind in der Datei „Kap8UE11.sav“ gegeben. Wählen Sie ein geeignetes statistisches 

Verfahren, um die Frage zu erhellen, ob sich die Haarqualität im Mittel zu den drei verschiedenen 

Zeitpunkten unterscheidet und falls ja, wie. Erstellen Sie anschließend einen entsprechenden 

Ergebnisbericht. Wie würden Sie das Ergebnis inhaltlich interpretieren? 

Beispiel 8.12 

Eine Forschungsgruppe untersucht Vor- und Nachteile verschiedener Lernmethoden. In einem 

Experiment werden die beiden Lernmethoden „Massiertes Lernen“ und „Verteiltes Lernen“ miteinander 

verglichen. Dazu werden 100 Schüler:innen auf zwei gleich große Gruppen aufgeteilt. Beide Gruppen 

werden für ein Semester lang mit denselben Inhalten unterrichtet. Bei beiden Gruppen wird am jeweils 

am Anfang und am Ende des Semesters ein Test durchgeführt. Eine Gruppe wird instruiert sich auf den 

Abschlusstest mit der Methode des massierten Lernens vorzubereiten. Die andere Gruppe soll sich auf 

den Abschlusstest mit der Methode des verteilten Lernens vorbereiten. Bei beiden Tests werden sowohl 

lexikalisches und prozedurales Wissen (Variablen LexWis und ProWis) als auch die 

Durchführungseffizienz (Variable DurEff) erfasst. Die erhobenen Daten sind in der Datei 

„Kap8UE12.sav“ gegeben. 

Erstellen Sie sowohl für den Test zu Semesterbeginn einen Index für die Prüfungsleistung, 

indem Sie den Mittelwert aus den drei Variablen LexWis_vorher, ProWis_vorher und DurEff_vorher 

bilden. Verfahren Sie anschließend ganz analog für die drei Variablen LexWis_nachher, 
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ProWis_nachher und DurEff_nachher, um einen entsprechenden Index für die Prüfungsleistung für den 

Test am Semesterende zu erstellen. 

Wählen Sie anschließend ein geeignetes statistisches Verfahren, um die Abhängigkeit der 

Prüfungsleistung vom Zeitpunkt und der Lernmethode inferenzstatistisch zu untersuchen. Erstellen Sie 

schließlich einen entsprechenden Ergebnisbericht. 

Beispiel 8.13 

Es wird eine neue VR-Methode (VR steht für „Virtuelle Realität“) für den Mathematikunterricht 

untersucht. Die Wirksamkeit der VR-Methode wird dafür mit einer klassischen Lehrmethode 

(Tafelunterricht) verglichen. Dazu werden jeweils 50 Schüler:innen ein Semester lang entweder mit der 

VR-Methode oder der klassischen Lehrmethode unterrichtet. Zudem wird die Leistung der 

Schüler:innen zu Beginn und am Ende eines Semesters mit einem standardisierten Mathematiktest 

erhoben. 

Nach Erhebung der Daten (siehe „Kap8UE13.sav“) wurde ein geeignetes statistisches Verfahren 

verwendet, um den folgenden lückenhaften Ergebnisbericht zu erstellen. Ihre Aufgabe besteht nun darin, 

diesen Ergebnisbericht zu vervollständigen. Die Lücken sind jeweils durch grau hinterlegte Bereiche 

markiert. 

Lückenhafter Ergebnisbericht: 

Alle folgenden inferenzstatistischen Ergebnisse beziehen sich auf ein Signifikanzniveau von 𝛼 = .005. 

Die mittleren Intensitäten der Angstsymptomatik unterscheiden sich signifikant für die beiden 

Messzeitpunkte, F(1, 98) =                     , p < .001, 𝜂𝑝
2 =                     , was einem großen Effekt gemäß 

Cohen (1988) entspricht. Die mittleren Intensitäten der Angstsymptomatik unterscheiden sich hingegen 

nicht signifikant zwischen den beiden Interventionsformen, F(1,                     ) = 2.31, p =                    , 

𝜂𝑝
2 = .02, was einem                     Effekt gemäß Cohens Heuristik (1988) entspricht. Zwischen 

Messzeitpunkt und Interventionsform besteht eine                 Interaktion, F(        , 98) = 8.86, p =              , 

𝜂𝑝
2 =                  , was gemäß Cohens Heuristik (1988) einem                    Effekt entspricht. 
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Für paarweise post-hoc Vergleiche werden gemäß Bonferroni korrigierte p-Werte berichtet. Für 

beide Interventionsformen unterscheiden sich die mittleren Depressionswerte signifikant zwischen 

beiden Messzeitpunkten (p < .001). Insbesondere nimmt die Angstsymptomatik für beide 

Interventionsformen von Messzeitpunkt 1 zu Messzeitpunkt 2            . Zu Messzeitpunkt 1, d.h. vor der 

Intervention, unterscheiden sich die mittleren Intensitäten der Angstsymptomatik für die beiden 

Interventionsformen                        voneinander (p =              ). Auch zu Messzeitpunkt 2 unterscheiden 

sich die mittleren Intensitäten der Angstsymptomatik für die zwei Interventionsformen           voneinander 

(p =                ). 

Deskriptive Statistiken sind in der Tabelle unten zusammengefasst. Wir sehen, dass die 

Angstsymptomatik für beide Interventionsformen über die Zeit hinweg                    (Haupteffekt 

Messzeitpunkt). Die Verringerung ist allerdings stärker ausgeprägt für die                Intervention 

(Interaktion). 

Deskriptive Statistiken 

Deskriptive Statistiken für beide Messzeitpunkte und Interventionsformen 

Messzeitpunkt Interventionsform M SD n 

1 VR  4.76  

 Klassisch 45.10   

2 VR    

 klassisch    
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Kapitel 9 

Einführung in die Regressionsanalyse: Einfache und multiple lineare Regression 

Stefan E. Huber 

Bislang haben wir uns ausschließlich mit inferenzstatistischen Fragestellungen befasst, bei der die 

unabhängige(n) Variable(n) in Form einer oder mehrerer kategorialer Variablen vorlagen. Dabei fragten 

wir uns, ob und wie typische Ausprägungen der abhängigen Variablen von der Zuordnung zu den 

einzelnen Kategorien der unabhängigen Variablen abhingen. Als Maß für typische Ausprägungen haben 

wir jeweils den Mittelwert in der jeweiligen Kategorie herangezogen. 

In den verbleibenden Kapiteln werden wir uns nun mit inferenzstatistischen Verfahren befassen, 

die solche Fragestellungen für den Fall metrischer Variablen für die unabhängigen Variablen 

verallgemeinern. An allem Übrigen wird sich nichts ändern. Uns wird weiterhin interessieren, ob und 

wie typische Ausprägungen der abhängigen Variablen (in Form von Mittelwerten) von einer oder 

mehreren unabhängigen Variablen abhängen. Beispielsweise haben wir uns in Kapitel 6 mit der Frage 

befasst, ob und wie das mittlere Depressionsniveau von der Zugehörigkeit zu einer von drei 

Altersgruppen abhängt. In diesem und den folgenden Kapiteln werden wir diese Frage auf die Frage 

verallgemeinern, ob und wie das mittlere Depressionsniveau vom Alter der Versuchspersonen abhängt. 

Das Alter ist bekanntlich eine metrische Variable, für die Messwerte auf einer kontinuierlichen Skala 

vorliegen können. Mit dem Verfahren, das wir in diesem und den folgenden Kapiteln kennenlernen 

werden, werden wir also z.B. Fragen beantworten können wie: Welches mittlere Depressionsniveau 

erwarten wir uns für Personen, die 35 Jahre alt sind? Oder für jemanden wird mit Becks 

Depressionsinventar ein Depressionsniveau von 32 Punkten ermittelt: Entspricht dies einem für das 

Alter der Person typischen Wert? Oder: Haben wir Anlass zur Vermutung, dass sich das mittlere 

Depressionsniveau überhaupt mit dem Alter verändert? Wenn ja, wie? Steigt es mit zunehmendem Alter 

an oder nimmt es mit zunehmendem Alter ab? Falls ja, wie stark? Und falls ja, wie sicher können wir 

uns dieses Ergebnisses auf der Grundlage unserer (einfachen Zufalls-)Stichprobe sein? 

Bei dem Verfahren, das uns erlauben wird, solcherlei Fragen (inferenzstatistisch) zu erhellen, 

handelt es sich um die sog. Regressionsanalyse. Im Gegensatz zu varianzanalytischen Modellen, bei 
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denen die unabhängigen Variablen diskret sind, können in regressionsanalytischen Modellen die 

unabhängigen Variablen sowohl stetig oder diskret sein. Zudem können eine oder mehrere unabhängige 

Variablen vorliegen. In diesem Kapitel werden wir uns zunächst mit dem einfachsten Fall beschäftigen: 

einer stetigen unabhängigen Variablen. Dieser Fall wird auch als einfache lineare Regression bezeichnet. 

Anschließend werden wir uns mit der sogenannten multiplen linearen Regression befassen, in der 

mehrere stetige unabhängige Variablen vorliegen werden. In späteren Kapiteln werden wir uns 

schließlich den Fall ansehen, dass eine oder mehrere dieser unabhängigen Variablen in Form von 

diskreten Variablen vorliegt. 

Im Fall der linearen Regression werden unabhängige Variablen (UV) manchmal auch als 

Prädiktoren und die abhängige Variable (AV) als Kriterium bezeichnet. Dabei handelt es sich also um 

keine neuen Konzepte, nur um zusätzliche Bezeichnungen für bereits bekannte Größen. 

Einfache lineare Regression: Das regressionsanalytische Modell und seine Voraussetzungen 

Wird zwischen einer UV und typischen Ausprägungen einer AV bis auf einen identisch und unabhängig 

normalverteilten Fehler ein linearer Zusammenhang vermutet, so kann dies in folgendem 

mathematischen Modell zum Ausdruck gebracht werden: 

𝑌𝑖  ~ 𝑁(𝜇𝑖, 𝜎2) mit 𝜇𝑖 = 𝐸(𝑌𝑖|𝑋𝑖 = 𝑥𝑖) = 𝛼 + 𝛽𝑥𝑖. 

Der Index 𝑖 bezeichnet hier wiederum den 𝑖-ten von insgesamt 𝑛 Fällen. Wir gehen im Folgenden 

wiederum davon aus, dass es sich bei diesen Fällen jeweils um unterschiedliche Personen aus einer 

einfachen Zufallsstichprobe handelt. Mit 𝑌𝑖 wird die zufällige Ausprägung der AV der zufällig 

gezogenen Person 𝑖 bezeichnet. Die konkrete Realisation dieser Zufallsvariable wird wiederum mit 𝑦𝑖 

bezeichnet. Für den Erwartungswert der AV wird angenommen, dass es sich dabei um eine lineare 

Funktion der UV handelt, mit dem Achsenabschnitt 𝛼 und der Steigung 𝛽. Für diesen Erwartungswert 

wird kurz 𝜇𝑖 geschrieben. Dabei handelt es sich gemäß dem Modell also um den Mittelwert einer 

Normalverteilung mit Varianz 𝜎2 an der Stelle 𝑋𝑖 = 𝑥𝑖 der unabhängigen Variablen. Das heißt, wir 

erwarten uns, dass für einen bestimmten Wert der UV die AV durch eine normalverteilte Zufallsvariable 

approximiert werden kann, deren Mittelwert linear von der Ausprägung der UV abhängt und deren 

Varianz unabhängig von der Ausprägung der UV ist. 
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Gemäß diesem Modell kann die AV also in zwei Anteile zerlegt werden: dem systematischen 

Zusammenhang zwischen UV (Prädiktor) und AV (Kriterium), 𝛼 + 𝛽𝑥𝑖, und einem unsystematischen 

Fehler 𝜀𝑖 = 𝑌𝑖 − (𝛼 + 𝛽𝑥𝑖), der der Abweichung der Zufallsvariable 𝑌𝑖 von ihrem Erwartungswert an 

der Stelle 𝑋𝑖 = 𝑥𝑖 entspricht. Da der Erwartungswert der Zufallsvariable 𝑌𝑖 gerade dem zweiten Term 

im Ausdruck für den Fehler 𝜀𝑖 entspricht, handelt es sich bei 𝜀𝑖 um eine normalverteilte Zufallsvariable 

mit Mittelwert Null und Varianz 𝜎2. 

Im regressionsanalytischen Modell werden demnach die folgenden Annahmen getroffen: 

1. Zwischen UV (Prädiktor) und dem Erwartungswert der AV für eine bestimmte 

Ausprägung der UV besteht ein linearer Zusammenhang. 

2. Die Abweichung konkreter Ausprägungen der AV von ihrem Erwartungswert kann 

durch eine identisch und unabhängig normalverteilte Zufallsvariable mit Mittelwert 

Null und einer von der UV unabhängigen, konstanten Varianz modelliert werden. 

Mit der Prüfung der Plausibilität dieser Annahmen werden wir uns im nächsten Kapitel befassen. Für 

die noch folgenden Beispiele im vorliegenden Kapitel nehmen wir schlichtweg an, dass diese 

Voraussetzungen erfüllt sind. 

Das regressionsanalytische Modell für die einfache lineare Regression enthält insgesamt also 

drei Parameter: den Achsenabschnitt 𝛼, die Steigung 𝛽, und die Varianz 𝜎2. Wie bei allen bisher 

behandelten Fragestellungen sind auch diese Parameter im Regelfall unbekannt und müssen mittels 

einer endlichen Stichprobe und geeigneten Schätzfunktionen geschätzt werden. Das heißt, wir kennen 

den linearen Zusammenhang zwischen UV und typischen Ausprägungen der AV in Abhängigkeit der 

UV nicht, sondern wollen ihn ermitteln, indem wir eine einfache Zufallsstichprobe erheben und dann 

die unbekannten Parameter 𝛼 und 𝛽 schätzen. Die Schätzung der Varianz 𝜎2 erlaubt uns schließlich 

abzuschätzen, wie weit die AV um die Regressionsgerade, die den Zusammenhang zwischen UV und 

mittleren Ausprägungen der AV beschreibt, in einzelnen, konkreten Fällen streut. Mit Schätzungen für 

alle drei Parameter können wir dann Daten simulieren, die mit den Stichprobendaten kompatibel sind. 
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Da es sich bei allen resultierenden Schätzwerten aber um Schätzungen auf der Basis einer 

endlichen Zufallsstichprobe handelt, bleiben damit wie immer rein statistisch Unsicherheiten zurück, 

die im Rahmen eines frequentistischen Zugangs in entsprechenden Konfidenzintervallen und p-Werten 

zum Ausdruck kommen. Mit dem Vorgehen, wie wir diese nebst Schätzungen für die Parameter selbst 

im konkreten Fall mit SPSS ermitteln können, befasst sich der nächste Abschnitt. 

Schätzung und Testung der Modellparameter der einfachen linearen Regression mit SPSS 

Die Schätzung und Testung der Modellparameter der einfachen linearen Regression mit SPSS wird an 

folgendem Beispiel illustriert. Für eine Stichprobe von 50 Personen wurde sowohl die negative 

Selbstbewertung als auch die Depressionsschwere mit geeigneten psychometrischen Instrumenten 

erhoben. Die beiden Variablen (die Variable nsb entspricht der negativen Selbstbewertung, die Variable 

bdi der Depressionsschwere) für die 50 Personen sind im Datensatz „Kap9daten.sav“ zu finden, den Sie 

in dem elektronischen Ergänzungsmaterial (Engl.: electronic supplementary material) zu diesem 

Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen können. Zwischen den beiden 

Variablen wird ein linearer Zusammenhang vermutet. Bzw. präziser: es wird vermutet, dass höhere 

Werte der negativen Selbstbewertung typischerweise mit höheren Werten der Depressionsschwere 

einhergehen. Das heißt insbesondere, es liegt eine gerichtete Hypothese vor (bei einer ungerichteten 

Hypothese würde lediglich ein positiver oder negativer linearer Zusammenhang zwischen den beiden 

Variablen vermutet werden, aber über das Vorzeichen würde keine entsprechende Vermutung bestehen). 

Durch Schätzung und Testung der Parameter eines einfachen linearen Regressionsmodells für die 

gegebenen Daten soll diese Vermutung inferenzstatistisch überprüft werden. 

Die entsprechende Regressionsanalyse können wir nach dem Öffnen des Datensatzes in SPSS 

unter Analyze >> Regression >> Linear… anfordern. Im sich öffnenden Menü übertragen wir 

anschließend die Variable bdi in das Feld „Dependent“. Die Variable nsb übertragen wir in das Feld 

„Block 1 of 1“, siehe Abbildung 9.1. Danach klicken wir auf „Paste“, dokumentieren unser Vorgehen 

in der sich öffnenden Syntax-Datei, siehe Abbildung 9.2, und führen anschließend die dort eingefügten 

Kommandozeilen aus. Daraufhin wird die in Abbildung 9.3 dargestellte Ausgabe erzeugt. In dieser 

Ausgabe finden wir sämtliche benötigten Informationen zur Schätzung und Testung unserer 

Modellparameter für die soeben durchgeführte Regressionsanalyse. In Abbildung 9.3 sind ferner alle 

https://osf.io/9tcx3/
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Bereiche bzw. Werte farblich hervorgehoben, die wir für die Formulierung eines entsprechenden 

Ergebnisberichts benötigen (siehe nächster Abschnitt). 

 

Abbildung 9.1. Anforderung einer einfachen linearen Regression in SPSS im Menü Analyze >> 

Regression >> Linear…. 

 

 

Abbildung 9.2. Syntax-Datei für die angeforderte einfache lineare Regressionsanalyse. 
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Abbildung 9.3. Ausgabe für die durchgeführte einfache lineare Regressionsanalyse mit dem Prädiktor 

Negative Selbstbewertung und dem Kriterium Depressionsschwere. 

In der Tabelle „Variables Entered/Removed“ finden wir noch einmal sämtliche Prädiktoren 

aufgelistet, die im Regressionsmodell vorkommen. Da wir im vorliegenden Beispiel nur eine UV haben, 

finden wir dort nur die Negative Selbstbewertung. 
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In der Tabelle „Model Summary“ finden wir den multiplen Korrelationskoeffizienten („R“), den 

sog. Determinationskoeffizienten, d.h. den Anteil der Varianz in der AV, der durch den geschätzten 

linearen Zusammenhang mit der UV in der Stichprobe aufgeklärt werden kann („R Square“), sowie den 

Standardschätzfehler („Std. Error of the Estimate“). Die ersten beiden dieser Größen werden in den 

folgenden Kapiteln noch genauer erläutert werden. Den Determinationskoeffizienten, d.h. R2, werden 

wir aber für den Ergebnisbericht brauchen. Daher soll jetzt schon erwähnt werden, dass es sich dabei 

um eine Effektstärke handelt, die analog zum 𝜂2 in der Varianzanalyse den Anteil der Varianz in der 

AV angibt, der durch die UV (für die gegebene Stichprobe) erklärt werden kann. Auch für diese 

Effektstärke gibt es wieder Heuristiken nach Cohen (1988), um die relative Größe eines Effekts schnell 

einschätzen zu können: ab einem Wert von .02 spricht man von einem kleinen, ab einem Wert von .13 

von einem mittleren, und ab einem Wert von .26 von einem großen Effekt. Da der Anteil der erklärten 

Varianz nur zwischen 0 und 1 variieren kann, wird auch bei dieser Größe wieder entsprechend APA-

Richtlinien die führende Null weggelassen. Auch diese Kategorisierung werden wir wieder in einem 

entsprechenden Ergebnisbericht vornehmen. Beim Standardschätzfehler handelt es sich schließlich um 

die Wurzel aus dem Schätzwert für die Varianz 𝜎2, d.h. einem unserer Modellparameter. Da dieser 

inhaltlich jedoch kaum interpretierbar ist (Bühner et al., 2025), wird er kaum je berichtet und auch wir 

werden diesen Schätzwert hier nicht weiter verwenden. Er könnte allerdings verwendet werden, um 

Daten zu simulieren, die mit den Stichprobendaten kompatibel sind (Bühner et al., 2025). 

In der Tabelle „ANOVA“ finden wir die Ergebnisse des Omnibustests für das gesamte 

regressionsanalytische Modell. Wie im nächsten Kapitel noch erläutert werden wird, wird mit diesem 

Omnibustest geprüft, ob sich irgendeiner der Steigungsparameter von Null unterscheidet. Hier haben 

wir nur einen Steigungsparameter, da nur ein Prädiktor vorliegt, weshalb das Ergebnis des Omnibustests 

auch dem Ergebnis der Testung dieses einen Steigungsparameters entsprechen wird, wie wir unten noch 

sehen werden. Das heißt, wirklich relevant werden die Ergebnisse dieses Omnibustests erst im Falle 

mehrerer Prädiktoren werden. Der Omnibustest entspricht jedenfalls formal einer Varianzanalyse, die 

prüft, ob mit dem Regressionsmodell ein signifikanter Anteil der Varianz in der AV erklärt wird (d.h., 

ob sich R2 von Null unterscheidet). Daher handelt es sich bei der Teststatistik (Spalte „F“) um einen F-

Wert aufgrund der F-Verteilung dieser Größe unter Geltung der Nullhypothese. Für eine F-Verteilung 
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sind wiederum zwei Freiheitsgrade anzugeben, die wir in der Spalte „df“ in den Zeilen „Regression“ 

und „Residual“ finden. Der p-Wert für die Teststatistik findet sich ganz rechts in der Spalte „Sig.“. Ist 

dieser p-Wert kleiner als das vorab gewählte Signifikanzniveau, so wird ein signifikanter Anteil an 

Varianz in der AV aufgeklärt. Bzw. kann man auch sagen, dass sich ein signifikanter Anteil an Varianz 

in der AV auf den Prädiktor zurückführen (= „regredieren“) lässt (daher auch der Name „Regression“). 

Unter der Annahme eines Signifikanzniveaus von 𝛼 = .005 ist das hier auch in der Tat der Fall (da der 

p-Wert kleiner als dieser Wert ist). 

In der Tabelle „Coefficients“ finden wir schließlich die Schätzwerte für unsere Modellparameter 

sowie entsprechende Ergebnisse von Signifikanztests. Den Schätzwert für unseren Achsenabschnitt 

finden wir in der Zeile „(Constant)“. Er beträgt 𝑎 = -0.004. In der Zeile „Negative Selbstbewertung“ 

finden wir den Schätzwert 𝑏 = 0.843. Aus der Theorie wissen wir (Bühner et al., 2025), dass wir für 

beide Schätzwerte mit einer auf der t-Verteilung beruhenden Teststatistik die Kompatibilität mit dem 

Vergleichswert Null prüfen können. Die Ergebnisse dieser Tests finden wir in den Spalten „t“ und 

„Sig.“. Insbesondere sehen wir, dass sich für den Schätzwert des Steigungsparameters ein t-Wert von 

10.78 ergibt (die Anzahl der Freiheitsgrade entsprechen den Nennerfreiheitsgraden aus der Tabelle 

„ANOVA“, d.h. der Anzahl an Freiheitsgraden, die dort in der Zeile „Residual“ zu finden ist) sowie ein 

p-Wert kleiner als 0.001. Wird der t-Wert quadriert, ergibt sich der Wert 116.2, was dem F-Wert aus der 

Tabelle „ANOVA“ von oben entspricht. In der Tat handelt es sich bei der F-Statistik des Omnibustests 

im Falle eines einzigen Prädiktors um das Quadrat der t-Statistik für den Vergleich des einzigen 

Steigungsparameters mit dem Vergleichswert Null. Genauso gilt, dass sich in diesem Fall der 

Steigungsparameter genau dann von Null unterscheidet, wenn sich R2 signifikant von Null unterscheidet, 

d.h., wenn ein signifikanter Anteil der Varianz in der AV auf die UV zurückgeführt werden kann. Das 

zeigt sich schließlich auch am standardisierten Regressionskoeffizienten für den Steigungsparameter, 

den wir in der Tabelle „Coefficients“ in der Spalte „Standardized Coefficients Beta“ finden. Dieser 

entspricht exakt dem multiplen Korrelationskoeffizienten (d.h. der Wurzel aus R2) und damit im Falle 

einer einfachen linearen Regression exakt dem Pearson Korrelationskoeffizienten zwischen UV und AV 

(für die einfache Regression ist der multiple Korrelationskoeffizient eben einfach nur ein ganz normaler 

einfacher Korrelationskoeffizient). Der standardisierte Regressionskoeffizient ist auch der 
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Steigungsparameter, den man erhält, wenn UV und AV beide z-transformiert („standardisiert“) werden. 

Inhaltlich kann der standardisierte Korrelationskoeffizient 𝛽𝑠𝑡𝑎𝑛𝑑 wie folgt interpretiert werden: Eine 

Erhöhung des Prädiktors um eine Standardabweichung geht mit einer Erhöhung des Kriteriums um 

𝛽𝑠𝑡𝑎𝑛𝑑 Standardabweichungen einher. 

Exkurs: Korrelation 

Der standardisierte Regressionskoeffizient entspricht dem Pearson-Korrelationskoeffizienten zwischen 

UV und AV? Auch davon können wir uns leicht in SPSS überzeugen. Die Berechnung des Pearson-

Korrelationskoeffizienten können wir unter Analyze >> Correlate >> Bivariate… anfordern. Dazu 

schieben wir einfach jene Variablen, zwischen denen wir die Korrelationskoeffizienten ermitteln wollen, 

ins Feld „Variables“. Im Falle des vorliegenden Datensatzes „Kap9daten.sav“ können wir das zu 

Illustrationszwecken einfach einmal für alle drei metrischen Variablen tun, siehe Abbildung 9.4. Zur 

Berechnung von Korrelationskoeffizienten stehen drei Möglichkeiten zur Auswahl. Hier belassen wir 

es bei der Voreinstellung „Pearson“, da das genau der Korrelationskoeffizient ist, den wir mit dem 

standardisierten Regressionsgewicht von oben vergleichen möchten. 

Nach Einfügen und Ausführen der entsprechenden Kommandozeilen in der Syntaxdatei erhalten 

wir die in Abbildung 9.5 gezeigte Ausgabe. In der Tat sehen wir, dass der Pearson-

Korrelationskoeffizient zwischen Negativer Selbstbewertung und Depressionsschwere sich zu 0.841 

ergibt. Zudem bekommen wir einen p-Wert, der sich auf die Nullhypothese eines 

Korrelationskoeffizienten von Null bezieht. Mittels Doppelklick auf die Tabelle in der Ausgabe sowie 

Doppelklick auf den p-Wert selbst können wir uns davon überzeugen, dass es sich exakt um denselben 

p-Wert wie für den Omnibustest und den Regressionskoeffizienten aus dem vorherigen Abschnitt 

handelt. Im Falle einer einfachen linearen Regression unterscheidet sich also der Anteil erklärter 

Varianz, der durch R2 zum Ausdruck kommt, genau dann signifikant von Null, wenn sich der (multiple) 

Korrelationskoeffizient bzw. das Regressionsgewicht des (einzigen) Prädiktors signifikant von Null 

unterscheidet. 
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Abbildung 9.4. Anforderung von Pearson-Korrelationskoeffizienten für die drei Variablen Negative 

Selbstbewertung, Abhängigkeitskognitionen, und Depressionsschwere, die im Datensatz 

„Kap9daten.sav“ enthalten sind. 

 

Abbildung 9.5. Pearson-Korrelationskoeffizienten und deren p-Werte für alle möglichen 

Kombinationen aus den drei untersuchten Variablen. 
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In der Ausgabe für die Korrelationskoeffizienten sehen wir zudem noch, dass auch zwischen 

den Abhängigkeitskognitionen und der Depressionsschwere sowie den Abhängigkeitskognitionen und 

der negativen Selbstbewertung positive Korrelationen in der erhobenen Stichprobe bestehen. Es könnte 

also durchaus auch interessant sein, zu untersuchen, welcher Anteil der Varianz in der 

Depressionsschwere auf die Intensität von Abhängigkeitskognitionen zurückgeführt werden kann. 

Dieser Fragestellung widmet sich das Übungsbeispiel 9.3. Zudem könnte es interessant sein, der Frage 

nachzugehen, wie viel Varianz in der Depressionsschwere durch beide Variablen (der negativen 

Selbstbewertung und den Abhängigkeitskognitionen) erklärt werden kann, wenn man zwischen beiden 

Variablen und dem Kriterium jeweils lineare Zusammenhänge annimmt. Bei letzterer Fragestellung 

handelt es sich um eine Fragestellung für eine sog. multiple lineare Regression (mit zwei Prädiktoren), 

der wir uns im nächsten Kapitel zuwenden werden. 

Exkurs: Zentrierung, Skalierung, Standardisierung von Variablen 

Wir haben oben gesehen, dass sich für den Schätzwert des Achsenabschnitts ein kleiner negativer Wert 

ergab (𝑎 = -0.004). Die inhaltliche Interpretation dieses Achsenabschnitts würde lauten: Auf der Basis 

des einfachen Regressionsmodells würde für einen Wert von Null auf der Skala der negativen 

Selbstbewertung eine mittlere Depressionsschwere von -0.004 erwartet werden. Rein rechnerisch ist an 

dieser Aussage nichts problematisch. Die Regressionsanalyse ergibt eine Regressionsgerade und 

selbstverständlich kann man ermitteln, wo diese Regressionsgerade die y-Achse schneidet, d.h., welchen 

Wert man für die mittlere Depressionsschwere erhalten würde, wenn die negative Selbstbewertung 

gleich Null (d.h. 𝑥 = 0) wäre. Wirklich von Interesse sind diese konkreten Werte aber kaum, da Becks 

Depressionsinventar keine negativen Werte zulässt, und auch die negative Selbstbewertung auf der 

entsprechenden psychometrischen Skala gar nicht Null sein kann. Manche Autor:innen sagen deshalb 

auch, dass der Schätzwert für den Achsenabschnitt 𝛼 daher inhaltlich nicht sinnvoll interpretiert werden 

kann (Bühner et al., 2025). 

Grundsätzlich ist das kein Problem, weil Kenntnis beider Schätzwerte 𝑎 und 𝑏 ja die Schätzung 

mittlerer Ausprägungen im Kriterium im gesamten inhaltlich sinnvoll interpretierbaren Bereich der UV 

zulässt. Möchte man aber auch für die Schätzung des Achsenabschnitts einen Wert, der bereits im 

inhaltlich sinnvollen Bereich für die UV liegt, so kann man dafür den Nullpunkt der Prädiktorvariable 
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entsprechend verschieben. Die Regressionsgerade schneidet dann die y-Achse bei diesem neuen 

Nullpunkt 𝑥′ = 0. 

Eine Möglichkeit dafür ist die sogenannte Zentrierung am Stichprobenmittelwert. Dazu wird 

eine neue Prädiktorvariable gebildet, indem von der ursprünglichen Variablen deren Mittelwert 

subtrahiert wird: 𝑋𝑖
′ = 𝑋𝑖 − 𝑋̅ bzw. für die beobachteten Werte 𝑥𝑖

′ = 𝑥𝑖 − 𝑥̅. Für die negative 

Selbstbewertung ergibt sich in unserem vorliegenden Beispiel ein Stichprobenmittelwert von 21.58. 

Unter Transform >> Compute Variable… können wir damit nun eine zentrierte Prädiktorvariable 

erzeugen, siehe Abbildung 9.6. Führen wir nun neuerlich eine einfache lineare Regressionsanalyse mit 

diesem zentrierten Prädiktor durch, erhalten wir die in Abbildung 9.7 gezeigte Ausgabe. Wir sehen, dass 

unser geschätzter Achsenabschnitt nun 𝑎 = 18.18 beträgt. Die inhaltliche Bedeutung dieses 

Achsenabschnitts ist nun: bei einer mittleren Ausprägung der negativen Selbstbewertung wird auf der 

Basis der durchgeführten Regressionsanalyse ein mittleres Depressionsniveau von 18.18 Punkten auf 

der Skala von Becks Depressionsinventar erwartet. An der inhaltlichen Interpretation der geschätzten 

Steigung 𝑏 ändert sich nichts. 

 

Abbildung 9.6. Erzeugung eines zentrierten Prädiktors am Beispiel der negativen Selbstbewertung. 
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Abbildung 9.7. Teil der Ausgabe für die einfache lineare Regressionsanalyse mit zentriertem Prädiktor. 

Neben der Zentrierung gibt es noch andere Variablentransformationen, die sich manchmal im 

Zusammenhang mit Regressionsanalysen anbieten, um die Resultate inhaltlich einfacher interpretieren 

zu können. Durch Skalierung einer Variablen kann etwa die Einheit, mit der diese Variable gemessen 

wird, verändert werden. Zur Skalierung kann etwa der gesamte in der Stichprobe vorliegende 

Variablenbereich verwendet werden: 𝑥𝑖
′ =

𝑥𝑖−min(𝑥𝑖)

max(𝑥𝑖)−min(𝑥𝑖)
. Die auf diese Weise skalierte Variable 𝑥𝑖

′ 

variiert dann im Intervall 0 bis 1, wobei der Wert 0 dem kleinsten gemessenen Wert und der Wert 1 dem 

größten gemessenen Wert entspricht. Dadurch ändern sich die inhaltlichen Interpretationen für beide 

Schätzwerte 𝑎 und 𝑏. Der Schätzwert 𝑎 entspricht der erwarteten mittleren Ausprägung des Kriteriums 

für den kleinsten Wert der AV. Der Schätzwert 𝑏 entspricht der Änderung in der erwarteten mittleren 

Ausprägung des Kriteriums, wenn sich die AV vom kleinsten zum größten Wert in der Stichprobe 

ändert. 

Eine weitere häufige Form der Variablentransformation ist die z-Transformation oder auch 

„Standardisierung“ (bei der es sich – jedenfalls in der in SPSS implementierten Form – eigentlich um 

eine Studentisierung handelt, da für die Skalierung nicht die empirische Standardabweichung, sondern 

der Schätzwert der Populationsstandardabweichung auf Basis der Stichprobe mittels der 

(erwartungstreuen) Schätzfunktion für die Populationsvarianz 𝜎2 verwendet wird, siehe Kapitel 3). Die 

z-Transformation einer Variablen lässt sich in SPSS sehr einfach über Analyze >> Descriptive Statistics 

>> Descriptives… durchführen, siehe Abbildung 9.8. 
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Abbildung 9.8. Z-Transformation einer Variablen in SPSS. 

Ergebnisbericht für die einfache lineare Regression 

Ein Ergebnisbericht für die einfache lineare Regression für das oben erläuterte Beispiel könnte wie folgt 

aussehen: „Ein signifikanter Anteil der Varianz in der Depressionsschwere der untersuchten 50 Personen 

kann (mit 𝛼 = .005) auf die negative Selbstbewertung zurückgeführt werden, F(1,48) = 116.20, p < .001, 

R2 = 0.71. Gemäß Cohens Heuristiken (1988) entspricht dies einem großen Effekt. Der 

Regressionskoeffizient für den Zusammenhang zwischen negativer Selbstbewertung und 

Depressionsschwere ist signifikant positiv, b = 0.84 (stand. 𝛽 = 0.84), t(48) = 10.78, p < .001 (einseitig); 

d.h., je höher die negative Selbstbewertung, desto höher die Depressionsschwere. Eine Erhöhung der 

negativen Selbstbewertung um einen Punkt geht gemäß dem geschätzten einfachen Regressionsmodell 

im Mittel mit einer Erhöhung der Depressionsschwere um 0.84 Punkte auf der Skala für die 

Depressionsschwere einher.“ 

Aufgrund der Kleinheit der sich ergebenden p-Werte geht leider in diesem Beispiel etwas unter, 

dass es sich hierbei um die Prüfung einer gerichteten Hypothese gehandelt hat und wie dabei 

grundsätzlich für die in SPSS gegebene Ausgabe vorzugehen ist. In der Ausgabe wird ja nur ein p-Wert 

für den Regressionskoeffizienten (Steigungsparameter) angegeben. Dieser bezieht sich auf eine 

Unterschiedshypothese („der Regressionskoeffizient unterscheidet sich von Null“). Bei Vorliegen einer 

einseitigen Hypothese kann dieser p-Wert halbiert werden (wenn allerdings der zweiseitige p-Wert 

bereits kleiner als .001 ist, gilt dies auch für den einseitigen). Zusätzlich ist selbstverständlich noch zu 

prüfen, ob der Steigungsparameter auch tatsächlich das vermutete Vorzeichen hat; ansonsten kann die 

Nullhypothese im Falle einseitiger Testung natürlich nicht „verworfen“ werden. 
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Regressionsanalyse für zwei Prädiktoren 

Enthält das Regressionsmodell mehr als einen Prädiktor, spricht man von einer multiplen Regression. 

Ein typisches Ziel der multiplen Regression ist die Verbesserung von Vorhersagen über die 

Kriteriumsvariable durch Berücksichtigung mehrerer Prädiktoren. Außerdem sind häufig die folgenden 

Fragen interessant (Bühner et al., 2025): 

• Wie viel Varianz im Kriterium kann durch die Prädiktoren gemeinsam erklärt werden? 

• Welcher der Prädiktoren weist dabei den größten Vorhersagebeitrag auf? 

• Wie groß ist der eigenständige Vorhersagebeitrag eines Prädiktors, wenn der Prädiktor mit 

anderen Prädiktoren korreliert? 

• Verändert sich die Stärke, Richtung und damit die Interpretation des Effekts eines Prädiktors 

durch die Berücksichtigung eines anderen Prädiktors? 

In diesem Abschnitt und im folgenden Kapitel werden wir uns mit der inferenzstatistischen 

Erhellung solcher Fragen im Rahmen multipler linearer Regressionsanalysen mit zwei Prädiktoren 

befassen. Die Erweiterung auf mehr als zwei Prädiktoren ist vergleichsweise einfach und wird im 

Rahmen einiger entsprechender Übungsbeispiele abgedeckt. 

Zur Illustration verwenden wir weiterhin den Datensatz „Kap9daten.sav“. In diesem Datensatz 

sind neben der Depressionsschwere und der negativen Selbstbewertung auch die Intensität von 

Abhängigkeitskognitionen (erfasst jeweils mit entsprechend geeigneten psychometrischen 

Instrumenten) von 50 (fiktiven) Personen gegeben. Mithilfe dieser Daten möchten wir der Frage 

nachgehen, ob und inwieweit die negative Selbstbewertung und Abhängigkeitskognitionen die 

Depressionsschwere von Personen erklären (bzw. vorhersagen) können. Wir nehmen dabei an, dass 

zwischen den beiden Prädiktorvariablen (negative Selbstbewertung und Abhängigkeitskognitionen) und 

dem Erwartungswert des Kriteriums (Depressionsschwere) bis auf einen normalverteilten Fehler jeweils 

lineare Zusammenhänge bestehen. 
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Regressionsanalytisches Modell für zwei Prädiktoren 

Das regressionsanalytische Modell im Falle zweier Prädiktoren lautet: 

𝑌𝑖  ~ 𝑁(𝜇𝑖, 𝜎2) mit 𝜇𝑖 = 𝐸(𝑌𝑖|𝑋𝑖1 = 𝑥𝑖1, 𝑋𝑖2 = 𝑥𝑖2) = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2. 

Das Modell bringt zum Ausdruck, dass für jede bestimmte Realisation 𝑥𝑖1 und 𝑥𝑖2 der beiden 

Prädiktoren 𝑋𝑖1 und 𝑋𝑖2 die Ausprägung des Kriteriums als identisch und unabhängig normalverteilte 

Zufallsvariable 𝑌𝑖 beschrieben werden kann, wobei der Erwartungswert (Mittelwert) der 

Normalverteilung linear von den beiden Prädiktoren abhängt, mit (unbekanntem) Achsenabschnitt 𝛼 

und den beiden (unbekannten) Steigungsparametern 𝛽1 und 𝛽2, und die Varianz unabhängig von den 

beiden Prädiktoren konstant den (unbekannten) Wert 𝜎2 hat. Die beiden Annahmen der multiplen 

linearen Regression sind damit wie schon im Fall der einfachen linearen Regression gegeben durch (i) 

den linearen Zusammenhang zwischen Prädiktoren und Erwartungswert des Kriteriums und (ii) die 

identische und unabhängige Normalverteilung der Abweichungen von diesem Erwartungswert mit 

konstanter Varianz für jede beliebige Realisation der Prädiktoren. Im letzten Abschnitt dieses Kapitels 

werden wir uns mit Möglichkeiten der Überprüfung der Plausibilität dieser Annahmen im Falle einer 

konkreten Stichprobe befassen. 

Die inhaltliche Bedeutung der Modellparameter 𝛼, 𝛽1 und 𝛽2 ist wie folgt. Der Achsenabschnitt 

𝛼 gibt den erwarteten Wert des Kriteriums für 𝑥𝑖1 = 𝑥𝑖2 = 0 an: 𝐸(𝑌𝑖|𝑋𝑖1 = 0, 𝑋𝑖2 = 0) = 𝛼 + 𝛽1 ∙ 0 +

𝛽2 ∙ 0 = 𝛼. Im Falle zweier Prädiktoren kann der lineare Zusammenhang 𝐸(𝑌𝑖|𝑋𝑖1 = 𝑥𝑖1, 𝑋𝑖2 = 𝑥𝑖2) =

𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 als Ebene im dreidimensionalen, kartesischen Koordinatensystem mit den Achsen 

𝑥𝑖1, 𝑥𝑖2 und 𝑌𝑖 dargestellt werden. Bei dieser Ebene handelt es sich um die Menge aller Erwartungswerte 

des Kriteriums für alle möglichen Kombinationen der beiden stetigen Prädiktorvariablen. In diesem 

Koordinatensystem entspricht der Achsenabschnitt 𝛼 dann dem Punkt, in dem die Regressionsebene die 

𝑌𝑖-Achse schneidet. Der Steigungsparameter 𝛽1 gibt die Steigung der Regressionsebene in Richtung der 

𝑥𝑖1-Achse an, d.h. die Änderung des erwarteten Werts des Kriteriums in Abhängigkeit der Änderung 

des Prädiktors 𝑥𝑖1: 
𝜕𝐸(𝑌𝑖|𝑋𝑖1=𝑥𝑖1,𝑋𝑖2=𝑥𝑖2)

𝜕𝑥𝑖1
=

𝜕

𝜕𝑥𝑖1
(𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2) = 𝛽1. D.h., 𝛽1 gibt an, wie stark 

sich der erwartete Wert des Kriteriums ändert, wenn ausschließlich der Prädiktor 𝑥𝑖1 um eine Einheit 

vergrößert wird („ausschließlich“ bedeutet, dass dabei nicht gleichzeitig auch 𝑥𝑖2 verändert werden darf, 
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d.h., die Veränderung ausschließlich in Richtung der 𝑥𝑖1-Achse vonstattengeht). Analog gibt der 

Steigungsparameter 𝛽2 gibt die Steigung der Regressionsebene in Richtung der 𝑥𝑖2-Achse an. Alternativ 

kann man auch sagen: Eine Erhöhung des Werts für Prädiktor 1 um eine Einheit unter Konstanthaltung 

des Werts für Prädiktor 2 geht im Mittel mit einer Erhöhung des Kriteriums um 𝛽1 einher; eine Erhöhung 

des Werts für Prädiktor 2 um eine Einheit unter Konstanthaltung des Werts für Prädiktor 1 geht im 

Mittel mit einer Erhöhung des Kriteriums um 𝛽2 einher (Bühner et al., 2025). 

Dabei ist zu betonen, dass mit einer „Erhöhung“ des Kriteriums „durch Erhöhung“ eines 

Prädiktors kein Kausalzusammenhang zum Ausdruck gebracht werden soll, sondern lediglich eine 

bedingte Assoziation. Mit der Veränderung eines Prädiktors (unter der Bedingung, dass andere 

Prädiktoren sich nicht ändern) geht lediglich (im Mittel) eine Änderung des Kriteriums einher, wird aber 

nicht (zwingendermaßen) durch die Veränderung des Prädiktors verursacht. Eine präzisere 

Formulierung des Sachverhalts würde lauten (Bühner et al., 2025): „Vergleicht man Personen aus der 

Population, die sich in ihren Werten auf UV1 (oder UV2) um genau eine Einheit unterscheiden, aber 

alle den gleichen Wert auf dem anderen Prädiktor aufweisen, dann haben die Personen mit dem höheren 

UV-Wert im Mittel einen um 𝛽1 (oder 𝛽2) Einheiten höheren Wert auf der AV.“ 

Schätzung und Testung der Modellparameter für die multiple Regressionsanalyse mit zwei 

Prädiktoren in SPSS 

Zur Schätzung und Testung der Modellparameter können wir ganz analog zum Vorgehen bei der 

einfachen linearen Regressionsanalyse im vorhergehenden Kapitel verfahren. Das heißt, wir können die 

Regressionsanalyse wiederum unter Analyze >> Regression >> Linear… anfordern. Im sich öffnenden 

Menü können wir dann die Variable bdi wieder in das Feld „Dependent“ und dieses Mal die beiden 

Variablen nsb und abk in das Feld „Block 1 of 1“ schieben, siehe Abbildung 9.9. Einfügen und 

Ausführen der entsprechenden Kommandozeilen in der Syntax-Datei ergibt dann die in Fehler! 

Verweisquelle konnte nicht gefunden werden. dargestellte Ausgabe. In Abbildung 9.10 sind auch 

wieder alle Bestandteile farblich hervorgehoben, die wir für die Erstellung eines entsprechenden 

Ergebnisberichts bzw. für die Erläuterung der Ausgabe im Folgenden brauchen werden. 
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Abbildung 9.9. Ausführung einer multiplen linearen Regression mit zwei Prädiktoren in SPSS. 

In der Tabelle „Model Summary“ sehen wir sogleich, dass unsere beiden Prädiktoren zusammen 

73.1% der Varianz der Depressionsschwere in der Stichprobe erklären können. Wir finden hier zudem 

wieder den Schätzwert für die Fehlervarianz 𝜎2 aus dem Regressionsmodell, der hier den Wert 6.5522 

≈ 42.93 hat. Der Wert unter „Std. Error of the Estimate“ muss hierbei quadriert werden, da es sich dabei 

um einen Schätzwert für die Standardabweichung (Achtung: nicht erwartungstreu!) und nicht die 

Varianz handelt. 

In der Tabelle „ANOVA“ finden wir das Ergebnis des Omnibustests, mit dem überprüft wird, 

ob für mindestens einen der Prädiktoren der Regressionskoeffizient ungleich Null ist (Bühner et al., 

2025). Dies ist gleichbedeutend mit der Überprüfung, ob der Anteil insgesamt erklärter Varianz, d.h. R2, 

ungleich Null ist. Wir sehen, dass der Unterschied zu Null signifikant ist mit F(2, 47) = 63.79, p < .001. 

In der Tabelle „Coefficients“ finden wir schließlich Schätzungen und Testungen unserer 

Modellparameter 𝛼, 𝛽1 und 𝛽2. Wir sehen, dass der Achsenabschnitt mit 𝑎 = -3.05 geschätzt wird und 

nicht signifikant von Null abweicht, t(47) = -1.26, p = .213. Für die Steigungsparameter ergibt sich: 𝑏1 

= 0.82, t(47) = 10.64, p < .001, sowie 𝑏2 = 0.18, t(47) = 2.01, p = .050. 
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Abbildung 9.10. Ausgabe für eine multiple lineare Regressionsanalyse mit zwei Prädiktoren in SPSS. 

Inhaltlich lassen sich die Schätzwerte wie folgt interpretieren: Für eine Population, in der das 

durch diese Schätzwerte spezifizierte Regressionsmodell den Zusammenhang zwischen den beiden 

Prädiktoren und dem Kriterium beschreibt, beträgt die mittlere Depressionsschwere für Personen mit 

einer negativen Selbstbewertung und einer Abhängigkeitskognition von jeweils 0 Punkten -3.05 Punkte. 

Eine Erhöhung der negativen Selbstbewertung um einen Punkt bei konstanter Abhängigkeitskognition 

geht im Mittel mit einer Erhöhung der Depressionsschwere um 0.82 Punkte einher. Eine Erhöhung der 
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Abhängigkeitskognitionen um einen Punkt bei konstanter negativer Selbstbewertung geht mit einer 

Erhöhung der Depressionsschwere um 0.18 Punkte einher. 

Inhaltlich ergeben Werte von Null für die beiden Prädiktoren und ein negativer Wert für die 

mittlere Depressionsschwere natürlich wenig Sinn. Hier könnte wieder die Zentrierung der beiden 

Prädiktoren Abhilfe schaffen. Häufig ist man aber ohnehin hauptsächlich an der bedingten Assoziation 

des Kriteriums mit den Prädiktoren und weniger am Wert für den Achsenabschnitt interessiert. 

Was ist hier mit „bedingter Assoziation“ gemeint? Bedingte Assoziation bezieht sich auf den 

Zusammenhang zwischen einem Prädiktor und einem Kriterium unter der Bedingung, dass zwischen 

dem Kriterium und einem anderen Prädiktor ein bestimmter Zusammenhang besteht. Das heißt, für die 

Interpretation unserer Schätzwerte und insbesondere derer p-Werte ist es ganz wesentlich, dass jeder 

Wert unter der Bedingung gilt, dass alle anderen Modellparameter den resultierenden Schätzwerten 

entsprechen. D.h. unter der Voraussetzung, dass 𝛼 = 𝑎 = -3.048, 𝛽2 = 𝑏2 = 0.183, und 𝜎2 = 𝑠2 = 

42.93 ergibt sich 𝑏1 = 0.817 mit t(47) = 10.64, p < .001. Der p-Wert ist dabei ein Maß dafür, wie sicher 

wir uns auf Basis der gegebenen Stichprobe sein können, dass sich der „wahre“ Modellparameter 𝛽1 

von Null unterscheidet. Die Argumentationslinie folgt dabei wieder der typischen Logik des 

Nullhypothesensignifikanztestens: Unter der Voraussetzung, dass 𝛼 = 𝑎 = -3.048, 𝛽2 = 𝑏2 = 0.183, 

𝜎2 = 𝑠2 = 42.93, und 𝛽1 = 0 würden sich nur selten Regressionskoeffizienten mit Betrag |𝛽̂1| ≥ 𝑏1 = 

0.817 ergeben, und d.h., unter der Voraussetzung, dass 𝛼 = 𝑎 = -3.048, 𝛽2 = 𝑏2 = 0.183, und 𝜎2 =

𝑠2 = 42.93 erscheint deshalb die letzte der Annahmen (d.h., 𝛽1 = 0) unter der Bedingung der Gültigkeit 

aller anderen Annahmen unplausibel. Auf Grundlage dieser Argumentation kann die Nullhypothese 𝛽1 

= 0 „abgelehnt“ werden. Typischerweise wird dafür wieder im Vorhinein ein Signifikanzniveau 

festgelegt um festzulegen, wie selten etwas unter Gültigkeit der Nullhypothese der Fall sein müsste, um 

die Gültigkeit der Nullhypothese zu bezweifeln, falls ein so seltener Fall für eine konkrete 

Zufallsstichprobe tatsächlich eintritt. Ist der p-Wert für den entsprechenden Regressionskoeffizienten 

kleiner als dieses vorab festgelegte Signifikanzniveau, wird die entsprechende Nullhypothese abgelehnt. 

Wichtig ist hierbei aber zu bemerken, dass all dies unter der Voraussetzung geschieht, dass die anderen 

Modellparameter exakt geschätzt wurden. Darauf bezieht sich der Begriff „bedingte Assoziation“. 
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Für unseren zweiten Steigungsparameter haben wir den Schätzwert 𝑏2 = 0.18 und den 

zugehörigen p-Wert 𝑝 = 0.050 erhalten. Wir können uns in diesem Fall also deutlich weniger sicher 

sein, dass – wiederum unter der Voraussetzung der Identität aller anderen Schätzwerte mit den 

tatsächlichen Modellparametern – ein entsprechend positiver Zusammenhang in der Population auch 

tatsächlich besteht. Mit dem üblichen Signifikanzniveau von .005 würden wir in diesem Fall gemäß der 

oben erläuterten Argumentationslinie die Nullhypothese 𝛽2 = 0 nicht „verwerfen“. 

Aber heißt das, dass die Abhängigkeitskognitionen keine Rolle für die Vorhersage der 

Depressionsschwere spielen? Nein, es heißt lediglich, dass, wenn wir die negative Selbstbewertung 

bereits kennen, uns die Abhängigkeitskognitionen im Mittel nicht mehr viel zusätzliche Information für 

die Vorhersage der Depressionsschwere liefern und wir uns deshalb auch bezüglich des Vorzeichens 

der zusätzlichen Auswirkung auf die Vorhersage nicht sehr sicher sind. Kennen wir umgekehrt die 

Abhängigkeitskognitionen und erfahren nun zusätzlich von der negativen Selbstbewertung, erlaubt uns 

das eine deutliche bessere Vorhersage der Depressionsschwere und wir sind uns sehr sicher, dass eine 

höhere negative Selbstbewertung im Mittel mit einem höheren Depressionsniveau für eine beliebige, 

gegebene Ausprägung der Abhängigkeitskognitionen einhergeht. Auf diese Bedeutung des zusätzlichen 

Informationsmehrwerts, den ein Prädiktor relativ zu anderen Prädiktoren für die Vorhersage der AV 

bietet und wie dieser in den Ergebnissen für die einzelnen Schätzwerte und deren p-Werte bereits 

abgebildet ist, werden wir im nächsten Kapitel wieder zurückkommen. 

Da wir alle Modellparameter geschätzt haben, können wir zur Vorhersage von Werten der AV 

für beliebige Werte der Prädiktoren diese Schätzwerte nun auch in unsere Modellgleichung einsetzen: 

𝑌𝑖  ~ 𝑁(𝜇𝑖 , 6.552),   𝜇𝑖 = 𝐸(𝑌𝑖|𝑋𝑖1 = 𝑥𝑖1, 𝑋𝑖2 = 𝑥𝑖2) = −3.05 + 0.82 ∙ 𝑥𝑖1 + 0.18 ∙ 𝑥𝑖2. 

Damit können wir nun typische Fragestellungen, die sich auf die Vorhersage des Kriteriums 

beziehen, beantworten. Z.B.: Welche Depressionsschwere erwarten wir im Mittel für Personen mit einer 

negativen Selbstbewertung von 20 Punkten und einer Intensität von Abhängigkeitskognitionen von 25 

Punkten? Einsetzen dieser Zahlenwerte für 𝑋𝑖1 und 𝑋𝑖2 ergibt: 

𝜇𝑖 = 𝐸(𝑌𝑖|𝑋𝑖1 = 20, 𝑋𝑖2 = 25) = −3.05 + 0.82 ∙ 20 + 0.18 ∙ 25 = 17.85. 
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Wir können dies nun auch mit dem Vorhersagewert für die mittlere Depressionsschwere 

vergleichen, den wir erhalten würden, wenn wir die negative Selbstbewertung um einen Punkt erhöhen, 

die Abhängigkeitskognitionen aber unverändert lassen, d.h. 𝑋𝑖1 = 21 und 𝑋𝑖2 = 25: 

𝜇𝑖 = 𝐸(𝑌𝑖|𝑋𝑖1 = 21, 𝑋𝑖2 = 25) = −3.05 + 0.82 ∙ 21 + 0.18 ∙ 25 = 18.67. 

Wir sehen, dass in diesem Fall die mittlere Depressionsschwere um 18.67 − 17.85 = 0.82 

Punkte zugenommen hat. D.h. die Differenz entspricht genau dem Schätzwert 𝑏1 = 0.82. Das illustriert, 

weshalb die inhaltliche Interpretation des Schätzwerts genau so lautet wie oben angegeben: Eine 

Erhöhung der negativen Selbstbewertung um einen Punkt bei konstanter Abhängigkeitskognition geht 

mit einer Erhöhung der Depressionsschwere um 0.82 Punkte einher. Die Interpretation ist eben nur 

korrekt, wenn der jeweils andere Prädiktor konstant gehalten wird. Das war auch bereits ganz zu Anfang 

des Kapitels mit der Auswirkung der Änderung ausschließlich in Richtung eines der beiden Prädiktoren 

auf den erwarteten Wert des Kriteriums gemeint. Werden beide Prädiktoren geändert, findet die 

Änderung nicht mehr ausschließlich entlang einer der beiden Koordinatenachsen statt. 

Ergebnisbericht für die multiple lineare Regression mit zwei Prädiktoren 

Ein Ergebnisbericht für eine multiple lineare Regression mit zwei Prädiktoren könnte wie folgt 

formuliert werden: „Eine multiple lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) 

signifikanter Anteil der Varianz in der Depressionsschwere der untersuchten n = 50 Personen durch die 

negative Selbstbewertung und die Abhängigkeitskognitionen der Personen erklärt werden kann, F(2, 47) 

= 63.79, p < .001, R2 = 0.73; ein großer Effekt gemäß Cohen (1988). Gemäß des resultierenden 

Regressionsmodells geht eine Erhöhung der negativen Selbstbewertung um einen Punkt (bei Konstant-

haltung der Abhängigkeitskognitionen) mit einer (mit 𝛼 = .005) signifikanten Erhöhung der Dep-

ressionsschwere um 0.82 Punkte auf der Skala von Becks Depressionsinventar einher, 𝑏𝑛𝑠𝑏 = 0.82 

(stand. 𝛽 = 0.82), t(47) = 10.64, p < .001. Eine Erhöhung der Abhängigkeitskognitionen um einen Punkt 

geht (bei Konstanthaltung der Depressionsschwere) hingegen mit einer (mit 𝛼 = .005) nicht-signi-

fikanten Erhöhung der Depressionsschwere um 0.18 Punkte einher, 𝑏𝑎𝑏𝑘 = 0.18 (stand. 𝛽 = 0.15), t(47) 

= 2.01, p = .050. Schätzwerte und Teststatistiken für das Gesamtmodell sind in Tabelle 10.1 gegeben.“ 



Kapitel 9: Einführung in die Regressionsanalyse 

271 

Im folgenden Kapitel werden wir sehen, wie wir diesen Ergebnisbericht noch um den Bericht 

der Varianzanteile, die jeder Prädiktor für sich genommen aufklären kann, ergänzen können. 

Tabelle 10.1 

Schätzwerte und Teststatistiken für alle Modellparameter des regressionsanalytischen Modells 

Prädiktor Schätzwert Standardfehler Stand. Koeff. t(47) p 

Achsenabschnitt (𝑎) -3.05 2.42  -1.26 .213 

Neg. Selbstbewertung (𝑏1) 0.82 0.08 0.82 10.64 < .001 

Abhängigkeitskogn. (𝑏2) 0.18 0.09 0.15 2.01 .050 
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Übungsaufgaben 

Die Datensätze für Beispiele 9.4 und 9.5 gehen ein weiteres Mal auf die bewundernswerte Fantasie von 

Andy Field (2024) zurück. Die für diese Beispiele benötigten Datensätze „Album Sales.sav“ und 

„Supermodel.sav“ können auf der frei zugänglichen Webseite mit ergänzenden Ressourcen für sein 

Buch „Discovering Statistics Using IBM SPSS Statistics“ unter 

https://edge.sagepub.com/field5e/student-resources/datasets heruntergeladen werden. 

Beispiel 9.1 

Was gehört zu den Voraussetzungen der linearen Regressionsanalyse? 

(a) Die UV muss diskret sein. 

(b) Die UV muss stetig sein. 

(c) Zwischen UV und (Erwartungswerten der) AV (bei gegebenen Ausprägungen der UV) muss 

ein linearer Zusammenhang bestehen. 

(d) Die Fehler (= Abweichungen der Ausprägungen der AV in Ordinatenrichtung von der wahren 

Regressionsgeraden) müssen unabhängig von der Ausprägung der UV normalverteilt mit 

Mittelwert Null und konstanter Standardabweichung 𝜎2 sein. 

Beispiel 9.2 

Welche Aussage/n trifft/treffen zu? 

(a) Im Rahmen der Regressionsanalyse wird die UV auch häufig als Kriterium bezeichnet. 

(b) Eine Regressionsanalyse kann nur mit einer stetigen UV durchgeführt werden. 

(c) Die AV wird bei Regressionsanalysen manchmal auch als Prädiktor bezeichnet. 

(d) Gemäß Cohen (1988) handelt es sich bei R2 im Bereich von .02 bis .13 um kleine, im Bereich 

von .13 bis .26 um mittlere, und ab .26 um große Effekte. 

  

https://edge.sagepub.com/field5e/student-resources/datasets
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Beispiel 9.3 

Im Datensatz „Kap9daten.sav“, den Sie in dem elektronischen Ergänzungsmaterial (Engl.: electronic 

supplementary material) zu diesem Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen 

können, ist neben der negativen Selbstbewertung und der Depressionsschwere noch eine weitere 

Variable gegeben. Bei dieser Variablen handelt es sich um die Intensität von Abhängigkeitskognitionen. 

Es liegt nahe, dass die Depressionsschwere auch von der Intensität von Abhängigkeitskognitionen 

abhängt. Untersuchen Sie diese Fragestellung mit einer einfachen linearen Regressionsanalyse und 

beantworten Sie insbesondere die folgenden Fragen: 

(a) Wie lauten die statistischen Hypothesen bezogen auf 𝛽? 

(b) Für welche statistische Hypothese entscheiden Sie sich mit einem Signifikanzniveau von 𝛼 = 

.05? 

(c) In welchem Wert haben sich die Schätzfunktionen für den Achsenabschnitt und den 

Steigungsparameter in der gegebenen Stichprobe realisiert? 

(d) Wie werden die Schätzwerte für den Achsenabschnitt und den Steigungsparameter inhaltlich 

interpretiert? 

(e) Wie lautet die geschätzte Regressionsgerade? 

Formulieren Sie schließlich einen Ergebnisbericht für die obige Fragestellung gemäß APA-Richtlinien. 

Beispiel 9.4 

Im Datensatz „Album Sales.sav“ sind die Verkaufszahlen (in Tausenden von Stück) von Musikalben 

diverser Bands (Variable Sales) sowie das Werbebudget für diese Alben (Variable Adverts; in 

Tausenden von Englischen Pfund) gegeben. Untersuchen Sie mit einem geeigneten statistischen 

Verfahren, ob und zu welchem Anteil sich die Verkaufszahlen auf das verwendete Werbebudget 

zurückführen lassen. Formulieren Sie einen entsprechenden Ergebnisbericht nach APA-Richtlinien. 

Beantworten Sie zusätzlich folgende Fragen: wenn das Werbebudget für ein Album um eine Million 

Pfund gesteigert wird, mit welcher Veränderung der Verkaufszahlen kann man im Mittel rechnen? Mit 

welcher Streuung um diese mittlere Veränderung kann man auf der Basis der gegebenen Daten rechnen? 

https://osf.io/9tcx3/
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Beispiel 9.5 

Im Datensatz „Supermodel.sav“ sind die Gehälter (Variable salary) von 231 Models sowie die Anzahl 

an Jahren, für die sie bereits als Model tätig sind (Variable years), gegeben. Untersuchen Sie mit einem 

geeigneten statistischen Verfahren, ob und zu welchem Anteil sich die Gehälter auf die Berufserfahrung 

(gemessen mit der Variable years) zurückführen lassen. Formulieren Sie einen entsprechenden 

Ergebnisbericht nach APA-Richtlinien. 

Beispiel 9.6 

Transformieren Sie die Intensität der Abhängigkeitskognitionen im Datensatz „Kap9daten.sav“ indem 

Sie (a) eine zentrierte Variable erzeugen, (b) die Variable so skalieren, dass Werte von Null dem 

kleinsten erhobenen Wert und Werte von 1 dem größten erhobenen Wert entsprechen, und (c) eine z-

transformierte Variable erzeugen. Lassen Sie sich dann jeweils für ein einfaches lineares 

Regressionsmodell mit dem Kriterium Depressionsschwere und der jeweiligen transformierten 

Variablen als Prädiktor Schätzwerte für Achsenabschnitt und Steigung ausgeben. Machen Sie sich 

mittels der jeweiligen Ausgaben bewusst, wie sich die jeweiligen Transformationen auf die inhaltliche 

Interpretation der beiden Modellparameter auswirken. 

Beispiel 9.7 

Ein Statistikprofessor vermutet, dass zwischen der aufgewendeten Lernzeit (Variable AnzahlStunden) 

und dem Logarithmus der Bestehensquote für eine seiner Vorlesungsprüfungen (= das Verhältnis des 

Anteils an Studierenden, die die Prüfung bestehen, zum Anteil derjenigen, die nicht bestehen) ein 

positiver linearer Zusammenhang besteht. Daraus folgert er, dass auch zwischen der aufgewendeten 

Lernzeit und einer regularisierten Logit-Transformierten der bei der Prüfung erreichten Punktzahl 

(Variable LogitPunkte) ein positiver linearer Zusammenhang bestehen sollte. Daher erhebt er seit einiger 

Zeit bei der entsprechenden Vorlesungsprüfung auch die Anzahl an aufgewendeten Lernstunden aller 

Studierenden, die die Prüfung absolvieren. Die entsprechenden Daten sind in der Datei „Kap9UE7.sav“ 

gegeben. 

Veranschaulichen Sie zuerst mittels eines Streudiagramms, dass die Annahme eines linearen 

Zusammenhangs zwischen den Variablen AnzahlStunden (UV) und LogitPunkte (AV) gerechtfertigt 



Kapitel 9: Einführung in die Regressionsanalyse 

275 

erscheint. Überprüfen Sie anschließend mit einem geeigneten statistischen Verfahren die Vermutung 

des Professors bezüglich des positiven linearen Zusammenhangs und verfassen Sie einen 

entsprechenden Ergebnisbericht. Beantworten Sie zudem die folgenden Fragen: Welcher Anteil an der 

Varianz der abhängigen Variablen kann durch die Anzahl der Lernstunden erklärt werden? Um welchen 

Betrag und in welche Richtung ändert sich die abhängige Variable für eine Zunahme der aufgewendeten 

Lernzeit um 20 Stunden? 

Beispiel 9.8 

Ein Ernährungswissenschaftler vermutet einen Zusammenhang zwischen dem Anteil an Gemüse (in %), 

den Studierende im Mittel pro Tag zu sich nehmen und deren Leistung bei Prüfungen. Um dieser 

Vermutung nachzugehen, erhebt er u.a. entsprechende Daten von 200 Studierenden, die im Datensatz 

„Kap9UE8.sav“ zu finden sind. 

Überprüfen Sie unter der Annahme eines linearen Zusammenhangs mit einem geeigneten 

statistischen Verfahren die Vermutung des Ernährungswissenschaftlers und verfassen Sie einen 

entsprechenden Ergebnisbericht. Beantworten Sie zudem die folgenden Fragen: Welcher Anteil an der 

Varianz der Prüfungsleistung kann in der Stichprobe im Mittel durch den Anteil an Gemüse erklärt 

werden? Um welchen Betrag und in welche Richtung ändert sich die Prüfungsleistung für eine Zunahme 

des Gemüseanteils um 10%? Erstellen Sie schließlich ein Streudiagramm für die beiden Variablen und 

fügen Sie dieses zu Ihrem Ergebnisbericht hinzu. 

Beispiel 9.9 

Für das folgende (fiktive) Beispiel können Sie davon ausgehen, dass die für die lineare Regression 

notwendigen Annahmen allesamt erfüllt sind. 

Eine Forscherin vermutet, dass zwischen der Menge an Brokkoli, die Personen wöchentlich zu 

sich nehmen, und der Intelligenz der Personen ein Zusammenhang besteht. Daher vermutet die 

Forscherin, dass sich die Leistung bei einem Intelligenztest zum Teil auf die Menge an wöchentlich 

verzehrtem Brokkoli zurückführen lässt. Um diese Hypothese zu testen, rekrutiert die Forscherin 464 

Personen, um deren IQ und die wöchentlich verzehrte Menge an Brokkoli (in g) zu ermitteln. Die 
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erhobenen Daten befinden sich in der Datei „brokkoli.sav“. Verwenden Sie für alle inferenzstatistischen 

Tests ein Signifikanzniveau von .005. 

(a) Führen Sie eine einfache lineare Regression durch, um die Hypothese der Forscherin 

inferenzstatistisch zu prüfen. Fassen Sie Ihr Ergebnis in einem entsprechenden 

Ergebnisbericht zusammen. Wie viel Varianz bezogen auf die Gesamtvarianz der 

Intelligenzleistung kann die Menge wöchentlich verzehrten Brokkolis erklären? Wie 

sehr verändert sich die Intelligenzleistung pro g wöchentlich verzehrten Brokkolis? 

(b) Ein anderer Forscher vermutet, dass neben der Menge wöchentlich verzehrten 

Brokkolis auch die Menge wöchentlich verzehrter Karotten ein bedeutsamer Prädiktor 

für die Intelligenz einer Person ist. Der Forscher befragt daher dieselben 464 Personen 

nach der Menge wöchentlich verzehrter Karotten (ebenfalls in g). Zeigen Sie, dass 

sowohl die Menge wöchentlich verzehrten Brokkolis als auch die Menge wöchentlich 

verzehrter Karotten signifikante Prädiktoren für die Intelligenzleistung sind. Wie viel 

Varianz bezogen auf die Gesamtvarianz der Intelligenzleistung können die beiden 

Prädiktoren gemeinsam erklären? 

Beispiel 9.10 

Ein Club organisiert regelmäßig Konzerte. Um den Umsatz zu optimieren möchten die 

Konzertveranstalter:innen herausfinden, welche Faktoren zum Erfolg (= Anzahl Besucher; Variable 

Besucher) eines Konzertes beitragen. Aus ihrer langjährigen Erfahrung wissen sie, dass der Erfolg unter 

anderem vom Ticketpreis (in Schweizer Franken; Variable Preis), dem Werbeaufwand (in Schweizer 

Franken; Variable Werbung), sowie dem Erfolg der Band (Anzahl verkaufter CDs; Variable 

CD_Verkauf) abhängt. Dies möchten die Veranstalter nun statistisch überprüfen, um künftig den Erfolg 

eines Konzertes im Voraus besser abschätzen zu können. Führen Sie eine lineare Regressionsanalyse 

für diese Fragestellung durch und verfassen Sie einen Ergebnisbericht gemäß APA-Richtlinien. Die 

Daten für dieses Beispiel finden Sie in der Datendatei „konzertbesuche.sav“. Hinweis: Sie können für 

dieses Beispiel davon ausgehen, dass die für die lineare Regression notwendigen Annahmen allesamt 

erfüllt sind. 
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Beispiel 9.11 

In der Datei „sterne.sav“ sind die Logarithmen der Oberflächentemperatur und der Leuchtkraft von 47 

Sternen gegeben. Zwischen dem Logarithmus der Oberflächentemperatur und dem Logarithmus der 

Leuchtkraft eines Sterns im Hauptreihenstadium besteht laut Theorie näherungsweise ein linearer 

Zusammenhang: mit steigender Oberflächentemperatur nimmt die Leuchtkraft zu. Für die folgenden 

Berechnungen können Sie davon ausgehen, dass die für die lineare Regression notwendigen Annahmen 

allesamt erfüllt sind. 

(a) Führen Sie eine einfach lineare Regressionsanalyse durch und erstellen Sie einen 

entsprechenden Ergebnisbericht. Wie würden Sie das Resultat in Hinsicht auf die theoretische 

Vorhersage interpretieren? 

(b) Bei der Inspektion eines Streudiagramms für die 47 Sterne stellt ein Astrophysiker fest, dass 

das Diagramm vier Sterne enthält, die sehr hohe Leuchtkraft (> 5.5) bei sehr geringer 

Oberflächentemperatur (< 3.6) aufweisen. Da es sich bei diesen Sternen vermutlich nicht um 

Hauptreihensterne, sondern um sogenannte Rote Riesen handelt, empfiehlt der Astrophysiker 

die Quantifizierung des linearen Zusammenhangs unter Ausschluss dieser vier Sterne zu 

wiederholen. Zu welchem Ergebnis kommen Sie in diesem Fall und was schließen Sie daraus 

für den theoretisch postulierten Zusammenhang zwischen den Logarithmen von 

Oberflächentemperatur und Leuchtkraft? 

Dieses Beispiel wurde inspiriert von der Erläuterung desselben Sachverhalts im Rahmen der 

Korrelationsanalyse bei Wilcox (2022; S. 543). Die Daten entsprechen ebenfalls in etwa den dort in 

Abb. 9.2 abgebildeten Daten, die ursprünglich auf Rousseeuw und Leroy (1987) zurückgehen. 
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Kapitel 10 

Regressionsdiagnostik, Effektstärken, Stichprobenplanung, Kollinearität 

Stefan E. Huber 

Regressionsdiagnostik 

Mit Regressionsdiagnostik ist eine Überprüfung der Annahmen des Regressionsmodells gemeint. 

Typischerweise wird im Rahmen einer Regressionsdiagnostik auch eine Ausreißeranalyse durchgeführt. 

Grundsätzlich ist die Regressionsdiagnostik vor dem inferenzstatistischen Verfahren durchzuführen 

(Bühner et al., 2025), auch wenn wir aus didaktischen Gründen hier die Reihenfolge umgekehrt haben. 

Der Einfachheit halber seien hier die Annahmen der linearen Regression noch einmal 

wiederholt: (i) es besteht ein linearer Zusammenhang zwischen Prädiktoren und Erwartungswert des 

Kriteriums und (ii) die Abweichungen von der Regressionsgerade (oder Regressionsebene bei zwei 

Prädiktoren oder Regressionshyperebene bei mehr als zwei Prädiktoren) können durch identische und 

unabhängig normalverteilte Zufallsvariablen mit Erwartungswert Null und konstanter Varianz für jede 

beliebige Realisation der Prädiktoren beschrieben werden. Für die Annahme der konstanten Varianz der 

Fehler werden wie schon für das varianzanalytische Modell häufig auch die Begriffe 

Varianzhomogenität oder Homoskedastizität verwendet. Liegt keine konstante Varianz vor, spricht man 

von Varianzheterogenität bzw. Heteroskedastizität. 

Während die Unabhängigkeit der Fehler durch die Stichprobenziehung gewährleistet werden 

muss, können die Annahmen der Linearität, der Normalverteilung und der konstanten Varianz der Fehler 

allesamt verletzt sein, und sollten daher überprüft werden. Neben der meist zusätzlich durchgeführten 

Ausreißeranalyse umfasst die Regressionsdiagnostik demnach (Bühner et al., 2025): 

• die Überprüfung der Linearitätsannahme, 

• die Überprüfung der Normalverteilungsannahme, 

• sowie die Überprüfung der Homoskedastizitätsannahme. 

Da sich die Fehler 𝜀𝑖 auf die unbekannte wahre Regressionsgerade bzw. -(hyper)ebene beziehen, 

können ihre Eigenschaften (außer in Simulationsstudien) im konkreten Fall nicht untersucht werden. 
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Stattdessen werden die sog. Residuen verwendet, d.h. die Differenzen zwischen den durch die 

Regressionsgleichung mit den geschätzten Modellparametern vorhergesagten Kriteriumswerten und den 

tatsächlich gemessenen Kriteriumswerten. Aus mathematischen Gründen empfiehlt es sich zudem 

hierbei sog. studentisierte Residuen zu verwenden. 

Überprüfung der Linearitätsannahme 

Im Falle der einfachen linearen Regression kann die Linearitätsannahme mithilfe eines Streudiagramms 

für AV und UV überprüft werden. Ein solches kann in SPSS unter Graphs >> Chart Builder… 

angefordert werden. Dort kann dann im Reiter „Gallery“ die Grafikrubrik „Scatter/Dot“ und für diese 

wiederum die erste Auswahlmöglichkeit ganz links ausgewählt werden. Zu Illustrationszwecken tragen 

wir die Depressionsschwere nach oben und die negative Selbstbewertung nach rechts auf, indem wir die 

beiden Variablen in die entsprechenden Felder im Fenster „Chart preview…“ ziehen. Zusätzlich fügen 

wir dem Streudiagramm noch eine lineare Fitgerade hinzu. All die getroffenen Auswahlen sind auch in 

Abbildung 10.1 illustriert. 

Das Ergebnis ist in Abbildung 10.2 gezeigt. Wir sehen, dass sich die einzelnen Datenpunkte 

relativ dicht und gleichmäßig um die lineare Fitgerade drängen. Die Annahme eines linearen 

Zusammenhangs zwischen diesen beiden Variablen scheint also durchaus ihre Berechtigung zu haben. 

Zum Vergleich ist in Abbildung 10.3 eine Datensituation dargestellt, die wenig Grund zur 

Annahme eines linearen Zusammenhangs zwischen den beiden Variablen im Streudiagramm gibt. Die 

Punktewolke weicht einerseits stark von der linearen Fitgerade ab, aber insbesondere scheinen die 

Abweichungen dabei auch einem bestimmten Muster zu folgen. Für kleine und große 𝑥-Werte weichen 

die 𝑦-Werte eher nach oben ab, während sie für mittlere 𝑥-Werte stark nach unten hin abweichen. In der 

Tat handelt es sich bei den gegen 𝑥 aufgetragenen 𝑦-Werten um eine Überlagerung einer Sinusfunktion 

mit weißem Rauschen, bzw. präziser: 𝑦 = 𝑦(𝑥) = sin(𝑥) + 𝑁(0, 1). Es liegt also tatsächlich kein 

linearer Zusammenhang vor. Ob aber in einer konkreten Situation die Annahme eines linearen 

Zusammenhangs eher gerechtfertigt ist oder nicht, ist selten so klar wie im gezeigten Beispiel. 

Im Rahmen der Überprüfung der Linearitätsannahme ist es wichtig zu bemerken, dass für eine 

sinnvolle Interpretation der geschätzten Modellparameter eines linearen Regressionsmodells zumindest 
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ein monoton steigender oder fallender Zusammenhang zwischen Prädiktor und Kriterium bestehen 

sollte. Ist dieser Zusammenhang in Wahrheit nicht linear (sondern z.B. exponentiell oder quadratisch) 

wird der wahre Zusammenhang durch die Annahme der Linearität zwar unter- oder überschätzt, aber es 

wird zumindest immer noch ein wichtiger Aspekt des Zusammenhangs, nämlich das Steigen oder Fallen 

des Kriteriums mit steigendem Prädiktor, zum Teil erfasst. 

 

Abbildung 10.1. Anforderung eines Streudiagramms für die Depressionsschwere und die negative 

Selbstbewertung inklusive einer linearen Fitgeraden. 
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Abbildung 10.2. Streudiagramm für die Depressionsschwere und die negative Selbstbewertung. 

 

Abbildung 10.3. Streudiagramm für zwei Variablen, zwischen denen eher kein linearer Zusammenhang 

bestehen dürfte. 
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Besteht nicht einmal ein monotoner Zusammenhang, lässt sich dieser mit einem linearen 

Regressionsmodell gar nicht abbilden. D.h., wenn eine lineare Regressionsanalyse kein Indiz für einen 

linearen Zusammenhang liefert, heißt dies nicht, dass zwischen den beiden Variablen gar kein 

Zusammenhang besteht. So besteht etwa im in Abbildung 10.3 illustrierten Fall ganz klar ein 

Zusammenhang zwischen 𝑥 und 𝑦; dieser ist eben gerade durch die Funktionsvorschrift 𝑦(𝑥) oben 

definiert. Allerdings besteht zwischen den beiden Variablen eben kein linearer Zusammenhang. Die 

Durchführung einer linearen Regressionsanalyse ergibt auch eine verschwindend kleine Steigung. Das 

ist kein Fehler. In der Tat hängt 𝑦 nicht linear von 𝑥 ab. Daraus aber abzuleiten, dass 𝑦 generell nicht 

von 𝑥 abhängt wäre ein Fehler. Die bestehende (sinusförmige) Abhängigkeit kann schlichtweg nicht mit 

der Steigung 𝛽 einer Geraden 𝑦(𝑥) = 𝛼 + 𝛽𝑥 erfasst werden. Um diesen Zusammenhang zu 

quantifizieren müssten wir andere Modelle verwenden. 

Wie Bühner et al. (2025) richtig folgern, beeinträchtigt die Verletzung der Linearitätsannahme 

also die Interpretation der Modellparameter selbst und nicht nur die inferenzstatistischen Verfahren zur 

Testung dieser Parameter. Daran kann auch ein großer Stichprobenumfang nichts ändern. Daher sollte 

die Linearitätsannahme in jedem Fall (d.h. insbesondere auch für sehr große Stichproben) überprüft 

werden. Zumindest eine graphische Überprüfung ist in jedem Fall zu empfehlen (Anscombe, 1973). 

Wie kann diese Annahme im Fall einer multiplen linearen Regression überprüft werden? Dafür 

muss einerseits die Linearitätsannahme für jeden Prädiktor einzeln veranschaulicht, andererseits 

zusätzlich die linearen Zusammenhänge der jeweils anderen Prädiktoren mit dem Kriterium 

herausgerechnet („herauspartialisiert“) werden. Eine entsprechende Überprüfung der Linearität kann in 

SPSS mit sog. partiellen Regressions-Plots geleistet werden. 

Dazu wird zuerst unter Analyze >> Regression >> Linear… zuerst wieder die multiple 

Regressionsanalyse, für die die partiellen Regressions-Plots inspiziert werden sollen, angefordert. Unter 

„Plots“ wird dann zusätzlich „Produce all partial plots“ ausgewählt, siehe Abbildung 10.4. Die 

Ergebnisse sind in Abbildung 10.5 und Abbildung 10.6 gezeigt. Beiden Streudiagrammen wurde 

nachträglich noch eine Fitgerade durch Doppelklick auf die entsprechende Grafik in der Ausgabe und 

dann Auswahl der entsprechenden Schaltfläche im Grafikeditor, siehe Abbildung 10.7, hinzugefügt. 
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Abbildung 10.4. Auswahl der partiellen Regressions-Plots in SPSS. 

 

 

Abbildung 10.5. Partieller Regressions-Plot für die negative Selbstbewertung. 
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Abbildung 10.6. Partieller Regressions-Plot für die Abhängigkeitskognitionen. 

 

Abbildung 10.7. Hinzufügen einer Fitgeraden zu einem Streudiagramm im Grafikeditor. 
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Überprüfung der Normalverteilungsannahme 

Die Überprüfung der Normalverteilungsannahme kann durch Inspektion eines Histogramms der 

standardisierten Residuen erfolgen. Dieses kann ebenfalls unter „Plots“ im Menü zur Anforderung der 

multiplen Regressionsanalyse ausgewählt werden, siehe Abbildung 10.9. Das sich ergebende 

Histogramm ist in Abbildung 10.8 dargestellt. 

Die Überprüfung der Annahme anhand dieser Abbildung ist in der Tat sehr subjektiv. Im 

vorliegenden Fall scheint die Annahme auch nur mehr schlecht als recht erfüllt zu sein (sie ist es 

allerdings, weil die fiktiven Daten entsprechend der Annahme erzeugt wurden). Allerdings lässt sich 

zeigen, dass die inferenzstatistischen Verfahren im Rahmen der linearen Regression relativ robust 

gegenüber der Verletzung der Normalverteilungsannahme sind (Rajh-Weber et al., 2025). Eine 

Verletzung der Normalverteilungsannahme ist daher insbesondere in großen Stichproben nicht so 

schlimm (Bühner et al., 2025). 

 

Abbildung 10.8. Histogramm der standardisierten Residuen inklusive einer gefitteten 

Normalverteilungskurve. 
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Überprüfung der Homoskedastizität 

Auch die Annahme der Homoskedastizität kann mittels Inspektion einer geeigneten Grafik überprüft 

werden. Dazu wird unter „Plots“ im Menü zur Anforderung der multiplen Regressionsanalyse ein 

Streudiagramm für die studentisierten Residuen sowie die z-transformierten Vorhersagewerte des 

Regressionsmodells angefordert, siehe Abbildung 10.9. 

Grund zur Annahme von Homoskedastizität liegt dann vor, wenn die studentisierten Residuen 

(als Schätzwerte der unbekannten Fehler im linearen Regressionsmodell, auf die sich die Annahme der 

Varianzhomogenität bezieht) sich gleichmäßig über den gesamten Bereich oberhalb und unterhalb der 

horizontalen Nulllinie verteilen (die rote Nulllinie in Abbildung 10.10 wurde nachträglich zur 

einfacheren Beurteilung eingefügt). Im vorliegenden Fall scheint die Annahme eher verletzt als erfüllt 

zu sein (als Erzeuger der Daten weiß der Verfasser aber, dass sie durchaus erfüllt war). Im Regelfall ist 

die grafische Beurteilung wiederum sehr subjektiv und selten eindeutig. 

 

Abbildung 10.9. Anforderung (i) eines Streudiagramms für die studentisierten Residuen und die z-

transformierten Vorhersagewerte des Regressionsmodells (rechts oben im Feld „Scatter 1 of 1“), (ii) 

eines Histogramms für die standardisierten Residuen, und (iii) der partiellen Regressions-Plots. 
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Im Zweifelsfall ist es aber im Fall der Homoskedastizitätsannahme durchaus ratsam auf 

alternative inferenzstatistische Verfahren zurückzugreifen, da Heteroskedastizität die 

inferenzstatistischen Verfahren im Rahmen multipler Regressionsanalysen selbst bei großen 

Stichproben maßgeblich beeinträchtigen kann (Rajh-Weber et al., 2025). Mögliche Alternativen sind 

Bootstrap-Verfahren (verfügbar im Menü für die lineare Regression in SPSS, siehe z.B. Bühner & 

Ziegler, 2017, für Beschreibung und Anleitung), Korrektur der Standardfehler (z.B. mit der HC3 

Methode, siehe z.B. Rajh-Weber et al., 2025), oder voraussetzungsrobustere Verfahren (siehe z.B. 

Wilcox, 2022). 

Ausreißeranalyse 

Ausreißer, d.h. Datenpunkte mit ungewöhnlich großen oder kleinen Werten für AV oder UV, können 

die Ergebnisse einer Regressionsanalyse stark verzerren. Dabei sind vor allem Einflusswerte von 

besonderer Bedeutung, die sowohl ungewöhnlich große oder kleine Werte für die UV aufweisen (= sog. 

Hebelwerte) als auch ungewöhnlich weit von der (ohne Ausreißer) geschätzten Regressionsgerade 

abweichen (= sog. Diskrepanzwerte). 

 

Abbildung 10.10. Streudiagramm für die studentisierten Residuen und die z-transformierten 

Vorhersagewerte des Regressionsmodells. 
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Einflusswerte lassen sich mit der sog. Cook’schen Distanz identifizieren. Diese Metrik gibt für 

jeden Fall (Person) an, wie stark sich die Vorhersagewerte für alle anderen Fälle (Personen) ändern 

würden, wenn dieser eine Fall (Person) von der Regressionsanalyse ausgeschlossen werden würde. Je 

größer die Cook’sche Distanz, desto höher der Einflusswert. Manche Autor:innen (Bühner et al., 2025) 

empfehlen daher, alle Fälle als kritisch zu betrachten, die eine Cook’sche Distanz von über 4/𝑛 

aufweisen, wobei 𝑛 den Stichprobenumfang bezeichnet. Allerdings ist dieser Zugang etwas 

problematisch, da solche Werte in 5% aller Falle rein statistisch zu erwarten sind, wenn alle Annahmen 

der linearen Regressionsanalyse erfüllt sind (siehe Übungsaufgabe 10.3). Als Alternative wird daher 

empfohlen, Fälle mit den extremsten Cook’schen Distanzen genauer anzusehen (Bühner et al., 2025). 

Sich eingehender mit den Daten auseinanderzusetzen ist grundsätzlich immer eine gute Idee. 

Allerdings sollten Fälle niemals ausschließlich aus den Daten entfernt werden, bloß weil sie 

extremere Werte als die Mehrzahl der Fälle aufweisen. Liegen keine offensichtlichen Fehler (etwa 

offensichtliche Fehler beim Digitalisieren von Papier-und-Bleistift-Fragebogendaten; z.B. Eintragen 

von Werten, die auf Item-Skalen gar nicht möglich sind) vor, sollte stattdessen besser auf Methoden 

zurückgegriffen werden, die robust gegenüber den Effekten von einzelnen Ausreißern sind (siehe z.B. 

Mair & Wilcox, 2020; Wilcox, 2022). Unter Umständen können Analysen auch einmal mit und einmal 

ohne extreme Ausreißerwerte durchgeführt werden, um immerhin deren Einfluss auf die 

Schlussfolgerungen quantifizieren zu können. 

Die Ermittlung der Cook’schen Distanz für alle Fälle (Personen) erfolgt in SPSS ebenfalls im 

Menü zur Anforderung der Regressionsanalyse und dort im Untermenü „Save…“, siehe Abbildung 

10.11. Durch Auswahl dieser Option wird dann eine neue Variable erzeugt (mit dem klingenden Namen 

„COO_1“). Für den vorliegenden Datensatz beläuft sich der Stichprobenumfang auf 𝑛 = 50, d.h. 4/𝑛 = 

0.08. In der Datenansicht können alle Fälle durch Rechtsklick auf den Spaltennamen „COO_1“ und 

Auswahl von „Sort Descending“ absteigend nach der Cook’schen Distanz sortiert werden. Wir sehen, 

dass nur drei Fälle eine Cook’sche Distanz größer als 0.08 aufweisen. Da 3/50 = 0.06 entspricht dies 

sehr genau den erwarteten 5% unter Gültigkeit aller Voraussetzungen für die lineare Regression, woraus 

der Verfasser dieses Dokuments schlussfolgern würde, dass hier im Allgemeinen keine untypische 

Datensituation bestehen dürfte. 
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Abbildung 10.11. Ermittlung der Cook’schen Distanz in SPSS. 

 

 

Abbildung 10.12. Fälle mit der größten Cook’schen Distanz in unserem Beispieldatensatz. 
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Effektstärken 

Im Rahmen der multiplen linearen Regression können zwei Typen von Effektstärken unterschieden 

werden (Bühner et al., 2025): Effektstärken, die die Stärke des Zusammenhangs aller Prädiktoren 

gemeinsam mit dem Kriterium quantifizieren, sowie Effektstärken, die die Stärke des Zusammenhangs 

eines einzelnen Prädiktors mit dem Kriterium quantifizieren. 

Eine Effektstärke des ersten Typs haben wir mit dem Determinationskoeffizienten R2 bereits 

kennengelernt. Auch eine Effektstärke des zweiten Typs haben wir mit dem standardisierten 

Regressionskoeffizienten bereits kennengelernt, aber bisher noch nicht im Detail erläutert. Dieser gibt 

uns neben der Stärke des Zusammenhangs auch eine Information über die Richtung des 

Zusammenhangs (unter Konstanthaltung aller anderen Prädiktoren). Zusätzlich zum standardisierten 

Regressionskoeffizienten werden wir mit der quadrierten Semipartialkorrelation noch eine weitere 

Effektstärke des zweiten Typs kennenlernen, die uns wiederum ein Maß für die Stärke des 

Zusammenhangs, aber nicht für seine Richtung angibt. Sie hat allerdings eine sehr anschauliche 

Bedeutung in Relation zum Determinationskoeffizienten, weshalb sie für eine Interpretation der 

Ergebnisse einer multiplen linearen Regressionsanalyse einen Mehrwert darstellt, den der 

standardisierte Regressionskoeffizient nicht liefern kann. 

Der Determinationskoeffizient R2 

In der einfachen linearen Regression ist der Determinationskoeffizient R2 schlichtweg das Quadrat des 

Pearson Korrelationskoeffizienten und gibt an, welchen Varianzanteil sich Prädiktor und Kriterium 

teilen. Für die multiple lineare Regression ist der Determinationskoeffizient R2 eine direkte 

Verallgemeinerung der quadrierten Pearson Korrelation aus der einfachen linearen Regression. Zu 

seiner Berechnung können einfach die durch alle Prädiktoren vorhergesagten Erwartungswerte des 

Kriteriums ermittelt werden, und deren Varianz dann mit der Varianz des Kriteriums ins Verhältnis 

gesetzt werden (Bühner et al., 2025). Diese Größe kann dann als jener Anteil der Varianz des Kriteriums 

interpretiert werden, der durch alle Prädiktoren zusammen „erklärt“ werden kann. Aufgrund der 

inhaltlichen Nähe zur Pearson Korrelation aus der einfachen linearen Regression wird die Wurzel aus 

dem Determinationskoeffizienten auch als multiple Korrelation bezeichnet. 
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Sowohl die multiple Korrelation als auch den Determinationskoeffizienten haben wir bei der 

Besprechung der Ausgaben für die lineare Regression in SPSS schon wiederholt gesehen und auch schon 

in entsprechenden Ergebnisberichten verwendet. Zur Wiederholung bemühen wir hier noch einmal den 

Datensatz aus Kapitel 9, d.h. die Datei „Kap9daten.sav“, und führen eine multiple lineare Regressions-

analyse mit den beiden Prädiktoren negative Selbstbewertung und Abhängigkeitskognitionen und dem 

Kriterium Depressionsschwere durch. Der für uns hier relevante Teil der Ausgabe ist in Abbildung 10.13 

dargestellt. Wir sehen, dass R2 = .73 und R = √𝑅2 = .86. Bei beiden Größen können wir entsprechend 

APA-Konventionen wieder die führende Null weglassen, da sie nur zwischen Null und Eins variieren 

können. 

 

Abbildung 10.13. Ausgabe der multiplen Korrelation und des Determinationskoeffizienten für eine 

multiple lineare Regressionsanalyse in SPSS. 

Es sei hier noch angemerkt, dass manche Autor:innen (Bühner et al., 2025) völlig zu Recht sehr 

streng zwischen Parameter, Schätzfunktion und Schätzwert unterscheiden und dafür auch ihre je eigene 

Notation einführen, z.B. griechische Buchstaben ausschließlich für (unbekannte) Modellparameter, 

große lateinische Buchstaben für Schätzfunktionen, kleine lateinische Buchstaben für Schätzwerte. 

Auch wenn hier in Anlehnung an die SPSS-Notation (und die übliche Notation nach APA-Richtlinien; 

American Psychological Association, 2019) für die multiple Korrelation ein großer lateinischer 

Buchstabe verwendet wird, handelt es sich hier wie auch in der SPSS-Ausgabe natürlich zweifelsfrei 

jeweils um konkrete Schätzwerte. Grundsätzlich darf man sich von unterschiedlichen Notationen nicht 

zu sehr verwirren lassen. Viel wichtiger als die Frage, welche Symbole verwendet werden, ist die Frage, 

was diese Symbole jeweils denotieren. Letzteres ist von inhaltlichem Belang, ersteres hauptsächlich 

Gewohnheit. Das zweite Newton’sche Axiom bleibt dasselbe, egal, ob es als 𝐹 = 𝑚𝑎, 𝐾 = 𝑚𝑏 oder 

𝑝̇ = 𝐹 denotiert wird. Am Naturgesetz ändert seine Schreibweise nichts. 
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Standardisierte Regressionskoeffizienten 

Auch die standardisierten Regressionskoeffizienten sind uns bereits wiederholt begegnet und wir haben 

sie auch in allen Ergebnisberichten von Regressionsanalysen brav angegeben. Abgesehen von der 

einfachen linearen Regression haben wir sie aber nicht weiter erläutert. 

Bei den standardisierten Regressionsgewichten handelt es sich schlichtweg um die 

Steigungsparameter, die man erhält, wenn Prädiktoren und Kriterium allesamt z-transformiert werden. 

Wenn mit 𝛽𝑧𝑗 der 𝑗-te standardisierte Regressionskoeffizient (des wahren Regressionsmodells) 

bezeichnet wird, kann der standardisierte Regressionskoeffizient wie folgt interpretiert werden (Bühner 

et al., 2025): Eine Erhöhung der 𝑗-ten UV um eine Standardabweichung geht (bei Konstanthaltung aller 

anderen UV) mit einer Erhöhung der AV um 𝛽𝑧𝑗 Standardabweichungen einher. Der standardisierte 

Regressionskoeffizient gibt also für jede UV an, wie stark diese bei Konstanthaltung aller anderen UV 

mit der AV zusammenhängt. Ferner gibt er die Richtung des Zusammenhangs an: bei positivem 

Vorzeichen, wächst die AV mit steigender UV, bei negativem Vorzeichen, fällt die AV mit steigender 

UV. 

Während der standardisierte Regressionskoeffizient (bzw. präziser: sein Schätzwert) in der 

einfachen linearen Regression dem Pearson Korrelationskoeffizienten zwischen UV und AV entspricht, 

tut er das in der multiplen linearen Regression nicht. Hier ist wichtig, sich daran zu erinnern, dass die 

einzelnen Regressionsgewichte bedingte Assoziationen zwischen den UV und der AV beschreiben. Das 

Regressionsgewicht (egal ob standardisiert oder nicht) für den 𝑗-ten Prädiktor ist ein Maß für den 

linearen Zusammenhang zwischen 𝑗-ter UV und AV unter Berücksichtigung aller anderen linearen 

Zusammenhänge zwischen den anderen UV und der AV. Auf die wesentliche Bedeutung dieser 

bedingten Assoziation werden wir bei der Diskussion der Kollinearität unten auch wieder 

zurückkommen. 

In SPSS erhalten wir die Schätzwerte für die standardisierten Regressionsgewichte 

standardmäßig in der Ausgabe für Regressionsanalysen. Für die im vorherigen Abschnitt durchgeführte 

Regressionsanalyse ist der entsprechende Teil der Ausgabe in Abbildung 10.14 dargestellt. Die 

Darstellung im Ergebnisbericht kann in den beiden vorhergehenden Kapiteln nachgeschlagen werden. 
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Abbildung 10.14. Ausgabe der standardisierten Regressionsgewichte in der Spalte „Standardized 

Coefficients Beta“ in der SPSS-Ausgabe für eine multiple lineare Regression. 

Die quadrierte Semipartialkorrelation 

Die quadrierte Semipartialkorrelation stellt eine Ergänzung zum standardisierten Regressionsgewicht 

dar, die besonders wegen ihres inhaltlichen Zusammenhangs mit dem Determinationskoeffizienten von 

Bedeutung ist. In der Tat ist die quadrierte Semipartialkorrelation für den 𝑗-ten Prädiktor nichts anderes 

als die Differenz des Determinationskoeffizienten des gesamten Regressionsmodells und dem 

Determinationskoeffizienten des Regressionsmodells, das man erhält, wenn man den 𝑗-ten Prädiktor aus 

dem gesamten Regressionsmodell entfernt (Bühner et al., 2025). Sie ist also gerade jener Anteil an der 

Varianz im Kriterium, der durch Hinzunahme des 𝑗-ten Prädiktors über die anderen Prädiktoren hinaus 

erklärt werden kann. Gleichzeitig ist sie jener Anteil der Varianz des Kriteriums, der auf den 

einzigartigen Beitrag des 𝑗-ten Prädiktors zurückzuführen ist. Dies ist vereinfacht gesagt, deshalb so, 

weil alle Anteile der Varianz des Kriteriums, die vom 𝑗-ten Prädiktor gemeinsam mit den anderen 

Prädiktoren erklärt werden, bereits im Regressionsmodell mit allen Prädiktoren außer dem 𝑗-ten 

Prädiktor abgedeckt sind (weil sie ja eben geteilte erklärte Varianzanteile sind). 

D.h., die quadrierten Semipartialkorrelationen geben uns an, welche Anteile an der insgesamt 

erklärten Varianz im Kriterium jeweils auf die einzelnen Prädiktoren zurückgehen. Die Summe der 

einzelnen Beiträge muss dabei aber nicht die gesamte erklärte Varianz (= Determinationskoeffizient) 

ergeben, da auch ein Anteil an erklärter Varianz übrigbleiben kann, der nur durch eine Kombination der 

Prädiktoren erklärt werden kann. In seltenen Fällen kann die Summe der Semipartialkorrelationen den 

Anteil insgesamt erklärter Varianz auch übersteigen. Die mathematischen Gründe dafür sind kompliziert 

und werden hier nicht weiter erläutert. 
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In SPSS können die Semipartialkorrelationen im Menü „Statistics…“ unter Analyze >> 

Regression >> Linear… durch Auswahl von „Part and partial correlations“ angefordert werden, siehe 

Abbildung 10.15. Die Schätzwerte der Semipartialkorrelationen sind dann in der Ausgabe in der Tabelle 

„Coefficients“ in der letzten Spalte unter der Bezeichnung „Part“ zu finden, siehe Abbildung 10.16. 

 

Abbildung 10.15. Anforderung der Semipartialkorrelationen (u.a.) im Rahmen der Regressionsanalyse 

in SPSS. 

 

Abbildung 10.16. Schätzwerte für die Semipartialkorrelationen. 

Für einen entsprechenden Ergebnisbericht sind diese Werte dann noch zu quadrieren. Damit 

ergibt sich für die negative Selbstbewertung eine quadrierte Semipartialkorrelation von 64.8% und für 

die Abhängigkeitskognitionen eine quadrierte Semipartialkorrelation von 2.3%. Unseren 

Ergebnisbericht aus dem vorherigen Kapitel könnten wir dann noch um die folgenden Zeilen ergänzen: 

„Während die Stärke der Abhängigkeitskognitionen eigenständig lediglich 2.3% der Varianz der 

Depressionsschwere erklären kann, kann die negative Selbstbewertung eigenständig 64.8% der Varianz 

erklären. Die Erklärung von 73.1% ꟷ 2.3% ꟷ 64.8% = 6.0% der Varianz kommt daher durch die 

gemeinsame Wirkung der beiden Prädiktoren zustande.“ 
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Stichprobenumfangsplanung 

Einfache lineare Regression 

Die Stichprobenumfangsplanung für die einfache lineare Regression wird für das folgende Beispiel 

illustriert. Der statistische Test soll ein Signifikanzniveau von 𝛼 = .005 sowie eine Teststärke (power) 

von 0.8 aufweisen. Als Mindesteffektstärke geben wir den Populationsdeterminationskoeffizienten von 

𝜌2 = .04 vor. Dieser muss erst noch in eine alternative (hier nicht behandelte) Effektgröße umgerechnet 

werden: 

𝑓2 =
𝜌2

1 − 𝜌2
= 0.0416̇ ≈ 0.0416667. 

Diese Umrechnung kann allerdings auch direkt in G*Power durchgeführt werden, wie im 

Folgenden erläutert wird. Dazu wählen wir in G*Power zuerst unter „Test family“ die Option „F tests“ 

aus. Unter „Statistical test“ wählen wir „Linear multiple regression: Fixed model, R2 increase“ aus. 

Unter “Type of power analysis” wählen wir “A priori: Compute required sample size – given 𝛼, power, 

and effect size“ aus. Wenn wir auf die Schaltfläche “Determine =>” links neben dem Feld „Effect size 

f2“ klicken, öffnet sich ein weiteres Menü, in dem wir die Umrechnung des Determinationskoeffizienten 

vornehmen können, indem wir diesen zuerst in das Feld „Partial R2“ eintragen und dann durch Klick 

auf „Calculate“ bestätigen. Durch Klick auf „Calculate and transfer to main window“ wird die 

errechnete Effektstärke in das Hauptfenster transferiert. Im Feld „𝛼 err prob“ tragen wir jetzt noch die 

Zahl 0.005 ein, und anschließend im Feld „Power (1-𝛽 err prob)“ die Zahl 0.8. In den beiden 

verbleibenden Feldern „Number of tested predictors“ und „Total number of predictors“ tragen wir 

jeweils die Zahl 1 ein. Danach bestätigen wir unsere Eingaben durch Klick auf „Calculate“ und erhalten 

das Ergebnis, dass wir für diese Wahl an Parametern eine Stichprobe des Umfangs n = 324 benötigen. 

Multiple lineare Regression 

Stichprobenumfangsplanungen für allgemeine Hypothesen über die Steigungsparameter sind leider 

kompliziert (Bühner et al., 2025). Wollen wir aber lediglich einzelne Steigungsparameter auf einen 

Unterschied von Null testen (d.h. 𝐻0: 𝛽𝑗 = 0, 𝐻1: 𝛽𝑗 ≠ 0), dann können wir eine Stichprobenplanung 

durch Rückgriff auf die entsprechende Semipartialkorrelation 𝜌𝑗 wie folgt durchführen. 
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In diesem Fall ermitteln wir die benötigte Effektstärke 

𝑓𝑗
2 =

𝜌𝑗
2

1 − 𝜌2
 

und setzen diesen Wert dann in G*Power für 𝑓2 ein. Falls wir z.B. 𝜌𝑗
2 = 0.02 und 𝜌2 = 0.1 vorgeben, 

erhalten wir 𝑓𝑗
2 = 0.02̇ ≈ 0.0222222. Nehmen wir zudem an, dass die Anzahl unserer Prädiktoren 2 

sei und alle übrigen Parameter dieselben Werte wie im vorhergehenden Fall haben sollen. 

In diesem Fall können wir in G*Power dieselben Einstellungen wie vorhin vornehmen, nur dass 

wir jetzt im Feld „Effect size f2“ direkt den Wert 0.0222222 eintragen und im Feld „Total number of 

predictors“ den Wert 2. Nach Bestätigung unserer Eingaben durch Klick auf „Calculate“ erhalten wir 

das Ergebnis, dass wir für diese Wahl an Parametern eine Stichprobe von n = 604 Personen benötigen. 

Kollinearität 

Zu guter Letzt werden wir uns in diesem Kapitel noch mit dem Thema der Kollinearität befassen, die 

sich stark auf die Standardfehler und damit die Hypothesentests für einzelne Steigungsparameter 

auswirkt. In diesem Zusammenhang werden wir auf die Frage zurückkommen, wie diese 

Hypothesentests denn im Einzelnen interpretiert werden können. Als hilfreich wird sich dabei die Frage 

danach erweisen, was durch die Hinzunahme eines bestimmten Prädiktors über das Kriterium 

herausgefunden werden kann, wenn die Ausprägung eines anderen Prädiktors bereits bekannt ist. Dies 

wird uns schließlich auch zur Frage führen, wie entschieden werden kann, ob ein zusätzlicher Prädiktor 

mit in ein Regressionsmodell aufgenommen werden sollte oder nicht. Wir werden sehen, dass dafür 

theoretische Überlegungen über kausale Zusammenhänge zwischen Variablen eine wesentliche Rolle 

spielen und dies grundsätzlich eine inhaltliche, konzeptuelle und keine statistische Frage ist. Bei der 

Klärung dieser konzeptuellen Fragen können sich allerdings gerichtete, azyklische Graphen (Engl.: 

Directed Acyclic Graphs, kurz DAGs) als nützlich erweisen, die wir daher auch kennenlernen werden. 

Von Kollinearität spricht man, wenn einer oder mehrere der Prädiktoren untereinander stark 

zusammenhängen. Da Kollinearität einen starken Einfluss auf die Standardfehler der Schätzfunktionen 

der Regressionskoeffizienten und damit auf die inferenzstatistischen Ergebnisse von Hypothesentests 

für diese Parameter hat (Bühner et al., 2025) ist die Berücksichtigung von Kollinearität vor allem für 
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die Schätzung der Regressionsparameter und deren Interpretation von Bedeutung. Punkt- und 

Intervallschätzungen des Determinationskoeffizienten, der Omnibustest im Rahmen der multiplen 

linearen Regression, und Vorhersagen auf Basis des gesamten Regressionsmodells sind von der 

Kollinearität nicht beeinträchtigt (Bühner et al., 2025). 

Illustration des Einflusses von Kollinearität auf die Ergebnisse einer multiplen Regressionsanalyse 

Um den Einfluss der Kollinearität auf die Ergebnisse einer multiplen linearen 

Regressionsanalyse zu illustrieren, wird das folgende Beispiel verwendet, das auf McElreath (2020) 

zurückgeht. Angenommen, wir wollen die (mittlere) Körpergröße mithilfe der Beinlänge von Personen 

vorhersagen. Da das Verhältnis von Beinlänge zu Körpergröße im Mittel in etwa 0.4-0.5 beträgt (siehe 

z.B. Bammer, 1998), sollte eine solche Prognose auf Basis eines Regressionsmodells im Mittel ja recht 

gut funktionieren. 

Im Datensatz „Kap10daten.sav“, den Sie im elektronischen Ergänzungsmaterial zu diesem 

Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen können, sind die linken und rechten 

Beinlängen sowie die Körpergrößen von 333 weiblichen fiktiven Personen gegeben. Wenn wir nun eine 

einfache lineare Regressionsanalyse mit der linken Beinlänge als Prädiktor und der Körpergröße als 

Kriterium durchführen, erhalten wir das in Abbildung 10.17 gezeigte Ergebnis. 

Dieses sieht auch ganz plausibel aus. Die linke Beinlänge erklärt 59% der Körpergröße, es bleibt 

ein Standardschätzfehler von etwa 4 cm, die Körpergröße entspricht ziemlich genau 2 mal der linken 

Beinlänge, 𝑏 = 1.97, und die Beinlänge ist ein signifikanter (mit 𝛼 = .005) Prädiktor der Körpergröße, 

d.h. wir würden uns auch in der Population einen positiven Zusammenhang zwischen der linken 

Beinlänge und der Körpergröße erwarten. Wenn wir anstelle des linken Beins das rechte Bein 

verwenden, bekommen wir ausgesprochen ähnliche Ergebnisse (hier nicht gezeigt). Das ergibt Sinn, da 

ja beide Beinlängen sehr ähnlich (wenn auch nicht identisch sind). Ein Zusammenhang zwischen 

Beinlänge und Körpergröße erscheint also auch nach unserer statistischen Analyse sehr plausibel. 

https://osf.io/9tcx3/
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Abbildung 10.17. Vorhersage der Körpergröße durch die Länge des linken Beins. Sieht ja ganz plausibel 

aus. 

Aber was geschieht, wenn wir nun beide Beinlängen als Prädiktoren verwenden? Die 

entsprechende Ausgabe ist in Abbildung 10.18 gezeigt. Wir sehen, es werden immer noch ca. 59% an 

Varianz aufgeklärt, die Schätzung der Körpergröße auf Basis der Beinlängen ist auch immer noch ca. 4 

cm genau. Das Gesamtmodell ist immer noch signifikant, d.h. der Anteil erklärter Varianz unterscheidet 

sich signifikant von Null (was jetzt keine bahnbrechende Information ist, aber auch nicht nichts). Aber: 

Keiner der beiden Prädiktoren ist signifikant! Und die Schätzwerte sind für keinen von beiden auch nur 

in der Nähe von 2. Und die Standardfehler sind so groß wie die Schätzwerte selbst! Hilfe! 
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Abbildung 10.18. Vorhersage der Körpergröße durch die Länge beider Beine. Was zum…?! 

Um sich dieses auf den ersten (und vielleicht auch zweiten, dritten oder vierten) Blick seltsam 

anmutende Ergebnis zu erklären, ist es gut, sich noch einmal in Erinnerung zu rufen, was uns die 

Schätzung und Testung einzelner Prädiktoren an Information liefern. Im Kontext dieses Beispiels geben 

sie darüber Auskunft, was uns die Länge des jeweils anderen Beins zusätzlich für die Schätzung der 

Körpergröße bringt, wenn wir die Länge eines Beins bereits kennen. D.h., wenn wir bereits wissen, dass 

das linke Bein 85 cm lang ist, was nützt es uns dann für die Schätzung der Körpergröße, wenn wir 

zusätzlich erfahren, dass das rechte Bein ebenfalls (nicht exakt, aber nahezu) 85 cm lang ist? Die 

Antwort ist: nicht sonderlich viel (wenn überhaupt irgendwas), denn die Körpergröße kann ja bereits 

durch die linke Beinlänge sehr genau geschätzt werden, die rechte Beinlänge bietet darüber hinaus kaum 

noch Zusatzinformation. Der Unterschied zwischen den Beinlängen hängt sogar kaum (im fiktiven 

Beispiel gar nicht) systematisch mit der Körpergröße zusammen. Das was den Zusammenhang zwischen 

Körpergröße und Beinlänge ausmacht, ist gerade das, was die beiden Beinlängen miteinander 

gemeinsam haben, und nicht die mehr oder weniger zufällige Schwankung im exakten Wert. 
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Das heißt, das Ergebnis der multiplen Regressionsanalyse ist keineswegs falsch. Es sagt genau 

das aus: kenne ich die Länge des linken Beins, dann kann mir die Zusatzinformation über die Länge des 

rechten Beins nicht mehr viel zur Schätzung der Körpergröße beitragen. Selbst darüber, ob sie mir 

überhaupt etwas beitragen kann – etwa ob die rechte Beinlänge die Körpergröße positiv oder negativ 

beeinflusst – bin ich mir sehr unsicher. Das ist die Aussage des p-Werts: Selbst wenn zwischen 

Körpergröße und rechter Beinlänge unter Berücksichtigung des linearen Zusammenhangs zwischen 

Körpergröße und linker Beinlänge überhaupt kein Zusammenhang besteht, würde in 40.4% aller Fälle 

(bei gleicher Varianz) ein gleich extremer oder sogar noch extremerer Regressionskoeffizient 

resultieren. Also in diesem Fall würde ich mich auf das negative Vorzeichen (𝑏𝑟𝑒𝑐ℎ𝑡𝑠 = -3.53) nicht 

verlassen. Das heißt, wir können uns in diesem Fall auf die Schätzungen der einzelnen Parameter (und 

noch nicht einmal darauf, ob sie überhaupt positiv oder negativ sind) überhaupt nicht verlassen. Das ist 

aber nach all dem Besprochenen völlig klar, weil sie ja jeweils bedingte Assoziationen sind, d.h. 

Schätzungen von Zusammenhängen unter Voraussetzung (der Gültigkeit) der anderen Zusammenhänge. 

Das erklärt auch, warum beide Parameter zusammen trotz individueller Unverlässlichkeit immer 

noch eine gute Schätzung der Körpergröße erlauben. Unter der Voraussetzung, dass der Zusammenhang 

zwischen linker Beinlänge und Körpergröße durch 𝑏𝑙𝑖𝑛𝑘𝑠 = 5.49 beschrieben wird, ist der 

Zusammenhang zwischen rechter Beinlänge und Körpergröße durch 𝑏𝑟𝑒𝑐ℎ𝑡𝑠 = -3.53 gegeben. Unter der 

hier gültigen Voraussetzung nahezu gleicher Beinlängen ergibt das, dass der Zusammenhang zwischen 

Körpergröße und Beinlänge gleich 5.49 – 3.53 = 1.96 ist, was in der Tat sehr genau unserem Wert aus 

den einfachen linearen Regressionsmodellen entspricht. 

Konzeptuell wäre es auch eine sinnvolle Wahl zur Vorhersage der Körpergröße aufgrund der 

Beinlänge weder die linke noch die rechte, sondern den Mittelwert aus beiden zu verwenden. Die 

zufälligen Schwankungen, die ja überhaupt erst für einen Unterschied zwischen den beiden sorgen, 

werden dadurch einerseits zum Teil reduziert und andererseits wird exakt das in das Regressionsmodell 

aufgenommen, was von Bedeutung ist, nämlich der Anteil an Beinlänge, der dem linken und rechten 

Bein gemeinsam ist. Wenn wir diese einfache lineare Regressionsanalyse durchführen, bekommen wir 

erwartungsgemäß auch nahezu wieder dasselbe Ergebnis wie oben, siehe Abbildung 10.19. 
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Abbildung 10.19. Vorhersage der Körpergröße durch die mittlere Beinlänge. 

Um es ganz deutlich auszusprechen: der bedeutendste Fehler, den es bei der Interpretation des 

Ergebnisses der multiplen Regressionsanalyse zu vermeiden gilt, ist der völlig falsche Schluss, dass 

zwischen den beiden Prädiktoren und dem Kriterium kein Zusammenhang besteht. Dieser Fehlschluss 

ist aber leicht zu vermeiden, wenn erinnert wird, dass es sich bei der Schätzung und Testung von 

Zusammenhängen zwischen einzelnen Prädiktoren und Kriterium jeweils um Schätzung und Testung 

von bedingten Assoziationen geht. 

Kollinearitätsdiagnostik in SPSS 

Im soeben erläuterten Beispiel bestand eine große Korrelation zwischen den beiden Prädiktoren im 

multiplen Regressionsmodell. Im Allgemeinen muss aber zum Vorliegen von Kollinearität keine große 

Korrelation für ein Paar von Prädiktoren bestehen. Kollinearität liegt auch vor, wenn eine 

Linearkombination aus zwei oder mehr Prädiktoren einen anderen Prädiktor sehr gut beschreibt. Das 

heißt aber nichts anderes als dass ein Prädiktor sehr gut durch die jeweils anderen (oder einige der 

anderen) beschrieben bzw. vorhergesagt werden kann. 
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Ob dies der Fall ist, kann also dadurch überprüft werden, dass von den 𝑚 Prädiktoren eines 

multiplen Regressionsmodells jeweils ein Prädiktor entfernt wird und die übrigen Prädiktoren dann als 

Prädiktoren in einem Regressionsmodell verwendet werden, in dem der entfernte Prädiktor als Kriterium 

fungiert. Ergibt sich für eines dieser insgesamt 𝑚 Regressionsmodelle ein sehr großer 

Determinationskoeffizient, so ist dies ein Zeichen von Kollinearität. 

Diese Regressionsmodelle müssen in SPSS allerdings nicht einzeln durchgeführt werden. 

Stattdessen kann die Option „Collinearity diagnostics“ im Menü zur Anforderung des multiplen 

Regressionsmodells unter „Statistics“ ausgewählt werden, siehe Abbildung 10.20. Im Output werden 

der Tabelle „Coefficients“ dann zwei Spalten mit sog. „Collinearity Statistics“ hinzugefügt, siehe 

Abbildung 10.21. 

 

Abbildung 10.20. Anforderung einer multiplen Regressionsanalyse inklusive einer 

Kollinearitätsdiagnostik in SPSS. 

 

Abbildung 10.21. Teil der Ausgabe für ein multiples Regressionsmodell inklusive 

Kollinearitätsdiagnostik (letzte beide Spalten ganz rechts). 
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Bei diesen Kennwerten zur Beurteilung darüber, ob Kollinearität vorliegt, handelt es sich um 

die sog. Toleranz und den Varianzinflationsfaktor. Bei der Toleranz handelt es sich schlichtweg um 1 −

𝑟𝑗
2, wobei 𝑟𝑗

2 der Determinationskoeffizient eines Regressionsmodells ist, in dem der 𝑗-te Prädiktor als 

Kriterium und alle anderen Prädiktoren als Prädiktoren fungieren. Kann ein Prädiktor also sehr gut durch 

die übrigen vorhergesagt werden, ist der Determinationskoeffizient nahe 1 und die Toleranz 

entsprechend nahe Null. Der Varianzinflationsfaktor (VIF) ist schlichtweg der Kehrwert der Toleranz, 

d.h. VIF = 1/Toleranz. Ist die Toleranz sehr klein, ist der VIF sehr groß und umgekehrt. Üblicherweise 

betrachtet man Toleranzen < 0.25 bzw. VIF > 4 als Indizien für Kollinearität, und Toleranzen < 0.1 bzw. 

VIF > 9 als deutliche Anzeichen von Kollinearität (Bühner & Ziegler, 2017). 

Gerichtete azyklische Graphen (DAGs) 

Das Beispiel im vorhergehenden Abschnitt illustriert, dass eine unüberlegte Hinzunahme von 

Prädiktoren in Regressionsmodelle die Interpretation erschweren und Fehlschlüsse erleichtern kann. 

Allgemein gilt, dass ein Hinzunehmen oder Weglassen von Prädiktoren in erster Linie eine konzeptuelle 

bzw. inhaltliche und keine statistische Frage ist. Sowohl das Hinzunehmen als auch das Weglassen von 

Prädiktoren kann einerseits wirklich vorliegende Zusammenhänge verschleiern oder verzerren und 

andererseits Scheinzusammenhänge überhaupt erst erzeugen. Man muss sich also gut überlegen, 

weshalb und wozu man welche Prädiktoren in einem multiplen Regressionsmodell berücksichtigen 

möchte. 

Ein Werkzeug, dass diese grundsätzlich alles andere als triviale Entscheidungen erleichtern 

kann, sind sog. gerichtete azyklisches Graphen (Engl.: directed acyclic graphs, kurz: DAGs). DAGs 

dienen der grafischen Veranschaulichung kausaler Zusammenhänge. Kausale Wirkrichtungen zwischen 

Variablen werden dabei durch Pfeile dargestellt, Variablen als beschriftete „Boxen“ oder Felder. 

Aus vier grundlegenden DAGs (mit den Bezeichnungen „Fork“, „Collider“, „Pipe“, 

„Descendant“) lassen sich alle möglichen, komplexen kausalen Zusammenhänge zwischen beliebigen 

Variablen konstruieren (McElreath, 2020). Die systematische Analyse dieser komplexen DAGs erlaubt 

dann abzuleiten, welche Variablen berücksichtigt werden müssen, um eine bestimmte Fragestellung zu 

erhellen. Ob ein DAG allerdings zutreffend ist, ist wiederum eine konzeptuelle Frage; repräsentiert der 
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DAG ein reales Netzwerk aus Kausalzusammenhängen einfach nicht oder falsch, so sind auch die daraus 

abgeleiteten Prädiktoren unter Umständen für die Erhellung der Fragestellung irreführend (Bühner et 

al., 2025). 

Im Folgenden erläutern wir die vier grundlegenden DAGs anhand konkreter Beispiele und 

entsprechender Regressionsanalysen in SPSS. 

Die Gabel (Fork; auch: Confounder) 

Zur Illustration einer sog. konfundierenden Variablen (Engl.: confounder) betrachten wir den in 

Abbildung 10.22 dargestellten DAG für das Beispiel bei Bühner et al. (2025). Einen dazu passenden 

illustrativen Datensatz finden Sie in der Datendatei „fork.sav“, die Sie wiederum im elektronischen 

Ergänzungsmaterial zu diesem Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen 

können. Für dieses Beispiel stellen wir uns vor, ein Forscher interessiere sich für den Zusammenhang 

zwischen der Intensität von Symptomen eines Sonnenbrands und Eiskonsum. Dazu erhebt er beide 

Variablen an 365 Tagen an einem grundsätzlichen sehr sonnigen Ort und führt im Anschluss eine 

einfache lineare Regressionsanalyse durch. 

 

Abbildung 10.22. DAG für eine konfundierende Variable (Engl.: confounding variable); auch als 

„Gabel“ (Engl.: Fork) bezeichnet. 

Die Ergebnisse sind in Abbildung 10.23 dargestellt. Der Forscher stellt in der Tat einen (mit 𝛼 

= .005) signifikanten Zusammenhang zwischen Sonnenbrandsymptomen und Eiskonsum fest, 𝑏 = 0.32 

(stand. 𝛽 = 0.32), t(363) = 6.36, p < .001. Der Forscher freut sich, publiziert sein Ergebnis in einer 

namhaften Zeitschrift unter dem Titel „Sunburn causes ice cream consumption“ und wird viele Mal 

zitiert. 

https://osf.io/9tcx3/
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Abbildung 10.23. Ergebnis einer einfachen linearen Regression ohne Berücksichtigung einer 

konfundierenden Variablen. 

Leider wird er aber hauptsächlich als Gegenbeispiel für gute wissenschaftliche Forschung 

zitiert. Denn kurz nach der Veröffentlichung seiner Studie hat eine Kollegin sich die erhobenen Daten 

und durchgeführten statistischen Analysen (die der Forscher dankenswerter Weise auf einem Open 

Science Repository zur Verfügung gestellt hat) noch einmal genauer angeschaut und festgestellt, dass 

der Forscher nicht die ebenfalls erhobene Variable „Sonnenschein“ in seiner Regressionsanalyse 

berücksichtigt hat. Mithilfe dieser Variablen wurde die Intensität des Sonnenscheins an jedem der 365 

Tage erhoben. Im Gegensatz zu unserem berühmt-berüchtigten Forscher argumentiert die Forscherin 

entsprechend des DAGs in Abbildung 10.22, dass die Intensität des Sonnenscheins sich sowohl auf die 

Intensität von Sonnenbränden als auch den Eiskonsum auswirkt. Zwischen den letzteren beiden 

Variablen bestehe gar kein direkter Zusammenhang, ein Zusammenhang komme nur scheinbar 
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zustande, wenn die konfundierende Variable „Sonnenschein“ nicht berücksichtigt werde. Um die 

Variable zu berücksichtigen, führt die Forscherin eine multiple lineare Regressionsanalyse mit den 

beiden Prädiktoren Sonnenschein und Sonnenbrand sowie dem Kriterium Eiskonsum durch. Die 

entsprechenden Ergebnisse sind in Abbildung 10.24 gezeigt. 

 

Abbildung 10.24. Ergebnisse der multiplen linearen Regression unter Berücksichtigung der 

konfundierenden Variablen. 

Wir sehen, dass nun in der Tat zwischen Sonnenbrand und Eiskonsum nur noch ein 

verschwindender Zusammenhang besteht (b = 0.006), der auch nicht mehr signifikant ist (p = .912). 

Zwischen Sonnenschein und Eiskonsum besteht ein deutlicher (und auch signifikanter) Zusammenhang, 

b = 0.46 (stand. 𝛽 = .52), t(362) = 9.44, p < .001. Ein einfaches lineares Regressionsmodell zeigt 

schließlich, dass auch zwischen Sonnenschein und Sonnenbrand ein deutlicher, signifikanter 

Zusammenhang besteht, b = 0.52 (stand. 𝛽 = .59), t(363) = 14.03, p < .001, siehe Abbildung 10.25. Die 
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Forscherin argumentiert, dass es auf Basis dieser Resultate plausibler erscheint, dass der Sonnenschein 

sowohl die Intensität von Sonnenbränden als auch den Eiskonsum erhöht, und der Zusammenhang 

zwischen den letzten beiden Variablen gar kein ursächlicher ist. Der höhere Eiskonsum geht nicht auf 

die Sonnenbrände zurück, sondern bloß auf die sonnigeren Tage. Leider wird der Artikel der Forscherin 

nicht so häufig zitiert wie der des Forschers, da sie ihre Arbeit nur in einem spezialisierteren 

Methodenjournal veröffentlichen konnte. Dies bringt uns schon zu unserem nächsten DAG. 

 

Abbildung 10.25. Einfache lineare Regression mit Kriterium Sonnenbrand und Prädiktor Sonnenschein. 

Die Kollision (Collider) 

Zur Illustration der Kollision bzw. eines sog. Colliders wird auf ein Beispiel bei McElreath (2020) 

zurückgegriffen, das der Frage nachgeht, weshalb besonders bahnbrechende oder innovative Forschung 

eigentlich so häufig fragwürdig erscheint, was ihre wissenschaftliche Qualität angeht. Und weshalb 

umgekehrt die langweiligsten Themen offenbar mit den rigorosesten Methoden untersucht werden. 



Kapitel 10: Regressionsdiagnostik, Effektstärken, Stichprobenplanung, Kollinearität 

309 

Um diesen scheinbaren Widerspruch zu klären, verwenden wir den Datensatz „collider.sav“, 

den Sie wiederum im elektronischen Ergänzungsmaterial zu diesem Dokument finden, das Sie unter 

https://osf.io/9tcx3/ herunterladen können. In diesem Datensatz finden wir Beurteilungen von 1000 

(fiktiven) wissenschaftlichen Arbeiten. Die Beurteiler:innen hatten dabei den Auftrag die Arbeiten nach 

jeweils zwei Hauptkriterien zu beurteilen: „Innovation“ (Variable I) und „Wissenschaftliche Qualität“ 

(Variable W). Neben diesen Hauptkriterien spielten noch eine Reihe fachspezifischer Kriterien eine 

Rolle, die allerdings nur ein geringes Gewicht im Beurteilungsprozess erhalten sollten. Aus allen 

Kriterien sollte anschließend ein Gesamtindex für die „Publikationswürdigkeit“ (Variable P) der 

jeweiligen Arbeit gebildet werden, in den die beiden Hauptkriterien additiv mit gleichem Gewicht 

eingingen. 

Was die Beurteiler:innen jedoch nicht wussten, war, dass bei allen beurteilten Arbeiten 

insgesamt kein systematischer Zusammenhang zwischen Innovation und wissenschaftlicher Qualität 

bestand. Das zeigt sich auch in guter Übereinstimmung mit einem einfachen linearen Regressionsmodell 

mit dem Kriterium Wissenschaftlichkeit (kurz für wissenschaftliche Qualität) und dem Prädiktor 

Innovation, siehe Abbildung 10.26. 

Betrachtet man nun aber nur wissenschaftliche Arbeiten mit derselben Publikationswürdigkeit, 

indem man letztere als weiteren Prädiktor in das Regressionsmodell hinzufügt (da dann die bedingte 

Assoziation zwischen Innovation und Wissenschaftlichkeit bei konstanter Publikationswürdigkeit 

berechnet wird), ergibt sich ein anderes Bild, siehe Abbildung 10.27. Für wissenschaftliche Arbeiten 

vergleichbarer Publikationswürdigkeit besteht in der Tat ein negativer Zusammenhang zwischen 

Innovation und Wissenschaftlichkeit. 

https://osf.io/9tcx3/
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Abbildung 10.26. Grundsätzlich scheint kein Zusammenhang zwischen wissenschaftlicher Qualität und 

Innovation wissenschaftlicher Arbeiten zu bestehen. 

Weshalb ist das so? Der Grund liegt im Beurteilungsverfahren und insbesondere der Addition 

der Kriterien Innovation und Wissenschaftlichkeit. Um eine gewisse Publikationswürdigkeit zu 

erreichen, kann eine Arbeit entweder äußerst innovativ und dafür etwas weniger wissenschaftlich sein 

oder aber auch äußerst wissenschaftlich und dafür etwas weniger innovativ. 

Der Zusammenhang zwischen den beiden Variablen kommt in diesem Fall nur scheinbar 

zustande, wenn ausschließlich Arbeiten einer gewissen Publikationswürdigkeit berücksichtigt werden; 

also z.B. Arbeiten, die alle in wissenschaftlichen „Top“-Journalen publiziert wurden oder in besonders 

angesehenen Journalen in einem gewissen Fachbereich. In diese Journale schaffen es nur die besten 

Artikel des entsprechenden Fachbereichs. Sind sie nicht innovativ genug, kommen sie nicht in Betracht. 

Sind sie nicht wissenschaftlich genug, kommen sie nicht in Betracht. Sind sie beides über die Maßen, 

versuchen die Autor:innen sie meist in noch höherrangigen Fächer-übergreifenden Journalen zu 
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publizieren. Übrig bleibt eine Balance zwischen Innovation und Wissenschaftlichkeit für einen gewissen 

Grad an Publikationswürdigkeit, die von dem negativen Vorzeichen des Regressionskoeffizienten für 

den Prädiktor Innovation reflektiert wird. 

Ist man also grundsätzlich an dem Zusammenhang zwischen Innovation und 

Wissenschaftlichkeit von wissenschaftlichen Artikeln interessiert, dann sollte man in diesem Beispiel 

gerade nicht für die Publikationswürdigkeit „kontrollieren“. Dadurch entsteht erst der soeben diskutierte 

Scheinzusammenhang. Allgemeiner sollte man für keine Variable „kontrollieren“, d.h. sie im multiplen 

Regressionsmodell als Prädiktor hinzunehmen, die sowohl durch einen Prädiktor als auch das Kriterium 

verursacht bzw. beeinflusst wird (hier die Publikationswürdigkeit, die sich hauptsächlich aus Innovation 

und Wissenschaftlichkeit ergibt). Bei dieser Variablen handelt es sich um einen sog. Collider. 

 

Abbildung 10.27. Wird für Publikationswürdigkeit „kontrolliert“ stellt sich plötzlich ein negativer 

Zusammenhang ein. 
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Der Kausalzusammenhang, der zwischen den Variablen X und Y und dem Collider Z vorliegt, 

ist durch den DAG in Abbildung 10.28 dargestellt. Beide Variablen X und Y wirken sich kausal auf die 

Variable Z aus. Wird in diesem Fall die Variable Z als Prädiktor mit in ein Regressionsmodell 

aufgenommen, so ergibt sich scheinbar ein Zusammenhang zwischen X und Y, selbst wenn zwischen 

diesen beiden Variablen kein (direkter oder indirekter) ursächlicher Zusammenhang besteht. 

 

Abbildung 10.28. DAG für den Fall eines Colliders (hier die Variable Z). 

Der Nachkomme (Descendant) 

Der sog. Nachkomme (Eng.: Descendant) ist eine Variable, die von einer anderen Variablen beeinflusst 

wird. Wird der Nachkomme als Prädiktor in ein Regressionsmodell mitaufgenommen, so hat dies 

teilweise dieselben Auswirkungen wie die Aufnahme der Variablen, von welcher der Nachkomme 

abhängt. Für die Situation, die in Abbildung 10.29 dargestellt ist, hat die Aufnahme der Variablen D als 

Prädiktor in etwa dieselben Auswirkungen wie die Aufnahme des Colliders Z in ein entsprechendes 

Regressionsmodell. Der Grund liegt darin, dass die Variable D mit Z zusammenhängt und deshalb deren 

Wirkung zum Teil (je nach Stärke des Zusammenhangs) vermittelt. Für das Beispiel mit der 

Publikationswürdigkeit aus dem vorherigen Abschnitt kann man sich etwa vorstellen, dass vom 

Kriterium der Publikationswürdigkeit ein weiteres Kriterium, z.B. das der Förderungswürdigkeit, 

abhängt. Würde man nun für letztere „kontrollieren“, würde man denselben Scheineffekt erhalten. 

 

Abbildung 10.29. DAG für den Fall eines Descendants (hier die Variable D) von einem Collider. 
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Die genaue Wirkung von Descendants hängt allerdings von der Art der Variable ab, von der sie 

abhängen. Handelt es sich dabei z.B. um einen Confounder, dann vermittelt der Descendant die Wirkung 

einer konfundierenden Variablen. Descendants sind gerade in den Sozialwissenschaften und der 

Psychologie sehr häufig, weil hier selten Variablen direkt gemessen werden können, sondern stattdessen 

Konstrukte erfasst werden, die näherungsweise mit den eigentlich interessierenden latenten Variablen 

zusammenhängen. 

Die Mediation (Pipe) 

Im Falle einer Mediation wird die Wirkung einer Variablen auf eine andere Variable über eine 

Drittvariable vermittelt. Ein Beispiel ist durch den DAG in Fehler! Verweisquelle konnte nicht 

gefunden werden. dargestellt. Zum Beispiel führt das Interesse für Aufgaben oder Tätigkeiten einer 

bestimmten Art zu mehr Übung in diesen Tätigkeiten und damit zu einem höheren Verständnis eines 

bestimmten Themengebiets (z.B. Statistik). Die Vermittlung der Wirkung von Interesse auf Verständnis 

muss aber auch nicht komplett über die Variable Übung vermittelt sein, deshalb bleibt in Abbildung 

10.30 auch ein direkter Pfeil von Interesse zu Verständnis bestehen. 

 

Abbildung 10.30. Beispiel einer Mediation. 

Ein Beispieldatensatz für einen Fall einer totalen Mediation ist in der Datendatei 

„mediation.sav“ gegeben, die Sie wiederum im elektronischen Ergänzungsmaterial zu diesem 

Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen können. Wird eine einfache lineare 

Regression ohne die Mediatorvariable (Variable m) durchgeführt, resultiert die in Abbildung 10.31 

gezeigte Ausgabe. Die einzige Prädiktorvariable (Variable x) erklärt einen signifikanten Anteil der 

Varianz im Kriterium (Variable y). 

https://osf.io/9tcx3/
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Abbildung 10.31. Ausgabe für eine einfache lineare Regressionsanalyse ohne die Mediatorvariable als 

Prädiktor im Falle einer totalen Mediation. 

Die Ausgabe für ein multiples Regressionsmodell, in dem auch die Mediatorvariable als 

Prädiktor hinzugefügt wurde, ist in Abbildung 10.32 gezeigt. Der Zusammenhang mit der 

Prädiktorvariable x ist (im Vergleich zu Abbildung 10.31) verschwunden, nur die Mediatorvariable ist 

ein signifikanter Prädiktor des Kriteriums. Da kein direkter Einfluss der Variablen x im multiplen 

Regressionsmodell auf das Kriterium verbleibt, muss der Einfluss aus dem einfachen linearen 

Regressionsmodell total über die Mediatorvariable vermittelt sein. 

Im Falle der Mediation hängt es jedoch von der Fragestellung ab, ob eine Mediatorvariable als 

Prädiktor mit in ein Regressionsmodell aufgenommen werden soll oder nicht. Man stelle sich 

beispielsweise vor, man möchte die Wirksamkeit einer neuen Therapiemethode für Depression 

untersuchen. Es stellt sich heraus, dass durch die neue Therapiemethode die negative Selbstbewertung 

der Klienten sinkt. Nimmt man nun die negative Selbstbewertung als Prädiktor der Therapieeffektivität 
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mit in ein entsprechendes Regressionsmodell auf, verringert sich natürlich der direkte Effekt der 

Therapiemethode. Dabei handelt es sich aber nicht um eine bessere Schätzung des Effekts der 

Therapiemethode, da ja die Wirkung über die negative Selbstbewertung gerade ein Wirkungspfad der 

Therapiemethode ist. Für die Gesamteffektivität der Therapiemethode bleibt dieser also durchaus zu 

berücksichtigen. Allerdings kann die Hinzunahme des Prädiktors negative Selbstbewertung in diesem 

Fall gleichzeitig das Verständnis für einen möglichen Wirkprozess der Therapiemethode durchaus 

erhöhen. 

 

Abbildung 10.32. Ausgabe für eine multiple lineare Regressionsanalyse mit der Mediatorvariablen als 

Prädiktor im Falle einer totalen Mediation. 
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Übungsaufgaben 

Die im Folgenden benötigten Datensätze finden Sie im elektronischen Ergänzungsmaterial (Engl.: 

electronic supplementary material) zu diesem Dokument, das Sie unter https://osf.io/9tcx3/ 

herunterladen können. 

Beispiel 10.1 

Welche Aussage/n zu Voraussetzungen der linearen Regressionsanalyse trifft/treffen zu? 

(a) Bei der multiplen Regression muss neben allen Voraussetzungen für die einfache lineare 

Regression auch die Sphärizität überprüft werden. 

(b) Die Fehlervarianz muss unabhängig von den Prädiktoren konstant sein. 

(c) Die Verletzung der Homoskedastizitätsannahme ist im Vergleich zur Verletzung der Annahme 

der Normalverteilung der Fehler bei der linearen Regression nicht so tragisch. 

(d) Eine Verletzung der Linearitätsannahme wirkt sich ausschließlich auf die inferenzstatistischen 

Verfahren im Rahmen der linearen Regressionsanalyse aus. 

Beispiel 10.2 

Welche Aussage/n zu Ausreißern trifft/treffen zu? 

(a) Einflusswerte können massive Auswirkungen auf die Parameterschätzung in der linearen 

Regression haben. 

(b) Unter Diskrepanzwerten versteht man Datenpunkte mit ungewöhnlich großen oder kleinen UV-

Werten im Vergleich zu den übrigen Datenpunkten. 

(c) Unter Hebelwerten versteht man Datenpunkte mit ungewöhnlich großen Abweichungen von der 

(ohne Ausreißer) geschätzten Regressionsgerade. 

(d) Diskrepanzwerte können anhand von standardisierten Residuen identifiziert werden. 

Beispiel 10.3 

Führen Sie eine Regressionsdiagnostik für beide Regressionsanalysen aus dem Beispiel 9.9 durch. Mit 

dem Wissen, dass die fiktiven Daten alle unter den Voraussetzungen für eine lineare Regressionsanalyse 

erzeugt wurden: Verwundert Sie die Anzahl der Fälle (Personen) mit einer Cook’schen Distanz größer 

als 4/n, wobei 𝑛 den Stichprobenumfang bezeichnet? 

https://osf.io/9tcx3/
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Beispiel 10.4 

Führen Sie eine Regressionsdiagnostik für das Beispiel 9.10 durch. 

Beispiel 10.5 

Florida ist auch als „orange county“ bekannt. Ein ortsansässiger Forscher hat schon lange die 

Vermutung, dass der regelmäßige Verzehr von Obst die Intelligenz fördert, und dass Orangen dabei eine 

besonders starke Wirkung haben. Um dieser Vermutung nachzugehen, rekrutiert er 400 Personen, um 

deren IQ sowie die wöchentlich verzehrte Menge an Orangen und Äpfeln (jeweils in g) zu ermitteln. 

Die erhobenen Daten befinden sich in der Datei „Kap10UE5.sav“. 

Bevor sich der Forscher an das Überprüfen seiner vermuteten Zusammenhänge machen kann, 

muss er eine Regressionsdiagnostik durchführen. Da er aktuell kaum Zeit für seine Forschung findet, 

wendet er sich an Sie. Unterstützen Sie den Forscher, indem Sie eine Regressionsdiagnostik inklusive 

einer Ausreißeranalyse für eine Regressionsanalyse mit den beiden Prädiktoren Orangenverzehr und 

Äpfelverzehr und dem Kriterium IQ durchführen. 

Beispiel 10.6 

Eine Forschungsgruppe möchte den Zusammenhang zwischen der Intelligenz und dem Ergebnis beim 

Aufnahmetest für das Medizinstudium untersuchen. Dazu werden die Daten von 1000 Teilnehmer:innen 

an dem Aufnahmetest untersucht. Die Daten sind in der Datei „Kap10UE6.sav“ gegeben. Bevor eine 

Regressionsanalyse durchgeführt werden kann, muss eine Regressionsdiagnostik durchgeführt werden, 

um die Voraussetzungen für eine Regressionsanalyse zu prüfen. Führen Sie diese Regressionsdiagnostik 

inklusive einer Ausreißeranalyse für die gegebenen Daten durch und fassen Sie beides in einem kurzen 

Bericht zusammen. 
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Beispiel 10.7 

Welche Aussage/n trifft/treffen zu? 

(a) Beim Determinationskoeffizienten handelt es sich um eine Effektstärke für den durchgeführten 

Omnibustest im Rahmen einer multiplen linearen Regressionsanalyse. 

(b) Bei der quadrierten Semipartialkorrelation handelt es sich um eine Effektstärke für den 

durchgeführten Omnibustest im Rahmen einer multiplen linearen Regressionsanalyse. 

(c) Die quadrierte Semipartialkorrelation gibt Auskunft sowohl über Stärke als auch Richtung des 

Zusammenhangs einer UV mit der AV. 

(d) Der standardisierte Regressionskoeffizient gibt Auskunft über die Richtung des 

Zusammenhangs einer UV mit der AV, aber nicht über die Stärke des Zusammenhangs. 

Beispiel 10.8 

Welche Aussage/n trifft/treffen zu? 

(a) Der Determinationskoeffizient gibt an, welcher Anteil der Varianz im Kriterium nur gemeinsam 

durch die Prädiktoren im Regressionsmodell erklärt werden kann. 

(b) Die quadrierte Semipartialkorrelation für den Prädiktor 𝑗 gibt den Anteil der Varianz im 

Kriterium an, der eigenständig durch den Prädiktor 𝑗 erklärt werden kann. 

(c) Für eine multiple lineare Regression kann keine Stichprobenumfangsplanung durchgeführt 

werden. 

(d) Für eine Stichprobenumfangsplanung für eine einfache lineare Regression in G*Power wird die 

Semipartialkorrelation benötigt. 

Beispiel 10.9 

Ergänzen Sie den Ergebnisbericht zu Teil (b) des Beispiels 9.9 aus dem vorhergehenden Kapitel um 

Angaben zu den Anteilen an der Varianz des Kriteriums, die eigenständig jeweils durch die beiden 

Prädiktoren erklärt werden können bzw. die nur durch beide Prädiktoren gemeinsam erklärt werden 

kann. 
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Beispiel 10.10 

Ergänzen Sie den Ergebnisbericht des Beispiels 9.10 aus dem vorhergehenden Kapitel um Angaben zu 

den Anteilen an der Varianz des Kriteriums, die eigenständig jeweils durch die beiden Prädiktoren 

erklärt werden können bzw. die nur durch beide Prädiktoren gemeinsam erklärt werden kann. 

Beispiel 10.11 

Führen Sie eine Stichprobenumfangsplanung für einfache lineare Regressionsanalyse durch. Der 

statistische Test soll ein Signifikanzniveau von 𝛼 = .001 sowie eine Teststärke (power) von 0.8 

aufweisen. Als Mindesteffektstärke geben wir den Populationsdeterminationskoeffizienten von 𝜌2 = .15 

vor. 

Beispiel 10.12 

Führen Sie eine Stichprobenumfangsplanung für multiple lineare Regressionsanalyse durch, wobei es 

hier nur um den Effekt eines einzelnen Prädiktors auf das Kriterium gehen soll. Der statistische Test soll 

ein Signifikanzniveau von 𝛼 = .005 sowie eine Teststärke (power) von 0.9 aufweisen. Die quadrierte 

Semipartialkorrelation für den interessierenden Prädiktor betrage mindestens 𝜌𝑗
2 = 0.03. Das gesamte 

Regressionsmodell mit drei Prädiktoren soll 28% der Varianz im Kriterium erklären. 

Beispiel 10.13 

Ein Freund von Ihnen argumentiert, dass man der guten Online-Bewertung eines Restaurants nur trauen 

dürfe, wenn das Restaurant nicht einfach zu erreichen sei. Umgekehrt sei bei Restaurants in einer guten 

Lage die Chance recht hoch trotz guter Online-Bewertungen nur mittelmäßiges Essen zu bekommen. 

Zeichnen Sie ein DAG mit den Variablen Online-Bewertung, Speisenqualität, und Lage. Wie müssen 

Sie die Wirkrichtung der Pfeile angeben, damit der DAG der Argumentation Ihres Freundes entspricht. 

Welchem Typ der besprochenen vier grundlegenden Arten von DAGs entspricht dieser Fall? 
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Beispiel 10.14 

Überlegen Sie sich ein Beispiel für eine konfundierende Variable. Zeichnen Sie den entsprechenden 

DAG. Erfinden Sie anschließend einen geeigneten Datensatz, der die Zusammenhänge zwischen den 

entsprechenden Variablen abbildet. Veranschaulichen Sie sich schließlich die Auswirkung auf die 

Resultate entsprechender Regressionsanalysen, indem Sie diese auf Basis Ihrer fiktiven Daten 

durchführen. 

Beispiel 10.15 

Wiederholen Sie Beispiel 10.14 für den Fall einer Mediation. 

Beispiel 10.16 

Im Datensatz „collider.sav“ ist neben der Innovation, der Publikationswürdigkeit und der 

Wissenschaftlichkeit für 1000 (fiktive) wissenschaftliche Arbeiten auch noch die Variable 

Förderungswürdigkeit gegeben. Diese Variable hat nur drei Ausprägungen: 2 = sehr förderungswürdig, 

1 = unter Umständen förderungswürdig, 0 = nicht förderungswürdig. Veranschaulichen Sie sich, dass 

auf jeder Stufe der Förderungswürdigkeit ein negativer Zusammenhang zwischen der Innovation und 

der Wissenschaftlichkeit der beurteilten wissenschaftlichen Arbeiten besteht. Wie erklären Sie sich 

diesen Befund? Zeigen Sie, dass für die beurteilten wissenschaftlichen Arbeiten im Allgemeinen kein 

solcher Zusammenhang besteht. Mit welchem DAG würden Sie den Zusammenhang zwischen den drei 

Variablen Innovation, Wissenschaftlichkeit und Förderungswürdigkeit beschreiben? 
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Kapitel 11 

Regressionsmodelle mit diskreten Prädiktoren und Interaktionen 

Hanna Rajh-Weber, Stefan E. Huber 

Bisher haben wir uns im Rahmen der Regressionsanalyse ausschließlich mit stetigen Prädiktoren 

befasst. Allerdings ist es mittels einer sogenannten Dummy-Kodierung keine große Schwierigkeit 

diskrete Prädiktoren in Regressionsanalysen zu berücksichtigen. Das soll im Folgenden illustriert 

werden. Dafür werden wir uns zuerst mit einfachen Regressionsanalysen mit nur einem Prädiktor (mit 

zwei oder mehr Ausprägungen) befassen. Danach werden wir uns mit multiplen Regressionsanalysen 

beschäftigen, bei welchen entweder alle oder nur manche der Prädiktoren diskret sind. In diesem 

Zusammenhang werden wir uns wieder mit Interaktionen befassen – d.h. der Auswirkung der 

Ausprägung eines Prädiktors auf die Wirkung eines anderen Prädiktors auf das Kriterium – die uns 

schon im Rahmen von Varianzanalysen untergekommen sind. Dabei werden wir zu guter Letzt sehen, 

dass auch zwei kontinuierliche Prädiktoren miteinander interagieren können. 

Um das Vorgehen für all die unterschiedlichen Kombinationsmöglichkeiten von diskreten und 

stetigen Prädiktoren in diesem Kapitel zu illustrieren, beziehen wir uns auf die fiktiven Datensätze 

„Kap11daten1.sav“, „Kap11daten2.sav“, „Kap11daten3.sav“ und „Kap11daten4.sav“, die Sie im 

elektronischen Ergänzungsmaterial zu diesem Dokument finden, das Sie unter https://osf.io/9tcx3/ 

herunterladen können. Auch wenn es sich dabei prinzipiell um fiktive Daten handelt, wurden die Daten 

näherungsweise auf der Grundlage der Zusammenhänge zwischen Geschlecht, Nationalität, Alter, 

Erhebungsjahr, und dem Jahreseinkommen erstellt, die Sie auf https://www.oecd.org/en/data.html 

nachschlagen können. 

Regressionsmodelle mit einem diskreten Prädiktor 

Wir betrachten zuerst den einfachsten Fall eines stetigen Kriteriums und eines diskreten Prädiktors mit 

zwei kategorialen Ausprägungen. Im Anschluss betrachten wir den Fall eines diskreten Prädiktors mit 

mehr als zwei kategorialen Ausprägungen. 

https://osf.io/9tcx3/
https://www.oecd.org/en/data.html
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Ein diskreter Prädiktor mit zwei (kategorialen) Ausprägungen 

Wir betrachten die folgende Fragestellung mithilfe des fiktiven Datensatzes „Kap11daten1.sav“: Wie 

wirkt sich das Geschlecht, wobei hier nur die Kategorien männlich und weiblich berücksichtigt werden 

(aufgrund der Dürftigkeit an Daten für die Kategorie divers), auf das jährliche Bruttoeinkommen in 

Österreich für Angestellte mittleren Alters aus? 

Aus Kapitel 5 wissen wir, dass wir diese Fragestellung auch mit einem t-Test für unabhängige 

Stichproben erhellen könnten. Eine entsprechende Berechnung in SPSS ergibt die in Abbildung 11.1 

gezeigte Ausgabe. Wir sehen, dass sich die mittleren Jahreseinkommen von Männern und Frauen (mit 

𝛼 = .005) signifikant unterscheiden, t(86.01) = 3.33, p = .001, Cohens d = 0.666. Das mittlere 

Jahreseinkommen von Männern (M = 77806.86, SD = 17608.65, n = 50) ist im Mittel um 10012.66 

USD, 95%-KI [4038.51, 15986.81] höher als das von Frauen (M = 67794.20, SD = 11895.41, n = 50). 

 

Abbildung 11.1. Ergebnis eines t-Tests für unabhängige Stichproben. 

Wenn wir für die beiden Kategorien der Geschlechtsvariable eine Dummy-Kodierung 

durchführen (für eine berechtigte und jedenfalls bedenkenswerte Kritik der Dummy-Kodierung, siehe 

McElreath, 2020), dann können wir die Fragestellung auch mit einer Regressionsanalyse erhellen. Für 

einen kategorialen Prädiktor mit zwei Ausprägungen sieht eine Dummy-Kodierung wie folgt aus: Eine 

Referenzkategorie wird mit 0 kodiert, die andere Kategorie mit 1. Im vorliegenden Datensatz wurde die 

Kategorie männlich mit 0 kodiert, d.h. diese Kategorie fungiert hier als Referenzkategorie. Prinzipiell 
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ist es egal, welche der beiden Kategorien als Referenzkategorie kodiert wird, wir müssen die Wahl nur 

entsprechend bei der Interpretation der Ergebnisse berücksichtigen. 

Bezeichnen wir die Dummy-Variable als 𝐷𝑖 mit 𝐷𝑖 = 0, falls Person 𝑖 männlich ist, und 𝐷𝑖 =

1, falls Person 𝑖 weiblich ist, dann können wir die regressionsanalytische Modellgleichung wie folgt 

schreiben: 

𝑌𝑖  ~ 𝑁(𝛼 + 𝛽𝐷𝑖, 𝜎2) 

mit den Modellparametern 𝛼, 𝛽 und 𝜎2. D.h. insbesondere, der Erwartungswert des Kriteriums 

hängt von der Dummy-Variablen ab. Für Männer ergibt sich 𝐸(𝑌𝑖|𝐷𝑖 = 0) = 𝛼 + 𝛽 ∙ 0 = 𝛼, während 

sich für Frauen 𝐸(𝑌𝑖|𝐷𝑖 = 0) = 𝛼 + 𝛽 ∙ 1 = 𝛼 + 𝛽 ergibt. D.h. die Interpretation des 

Steigungsparameters 𝛽 ist exakt dieselbe, die wir schon im Fall der einfachen linearen Regression in 

Kapitel 9 kennengelernt haben: Eine Erhöhung der Dummy-Variablen um den Wert 1 geht im Mittel 

mit einer Erhöhung 𝛽 im Kriterium einher. Genauso können wir auch die Ausgabe interpretieren, die 

wir erhalten, wenn wir eine entsprechende einfache lineare Regression mit dem Prädiktor Geschlecht 

und dem Kriterium Einkommen in SPSS durchführen (im Datensatz liegt die Variable Geschlecht 

bereits mit der entsprechenden Dummy-Kodierung vor), siehe Abbildung 11.2. 

Auch an dieser Ausgabe erkennen wir, dass das Einkommen von Männern und Frauen sich 

signifikant unterscheidet, da der Schätzwert für das Regressionsgewicht sich (mit 𝛼 = .005) signifikant 

von Null unterscheidet, t(98) = 3.33, p = .001. Der Schätzwert des Parameters ist negativ, b = -10012.66, 

vom Betrag her jedoch genau gleich wie die Mittelwertdifferenz, die wir im Rahmen des t-Tests oben 

erhalten haben. Das negative Vorzeichen geht bloß darauf zurück, dass oben die Differenz zwischen 

Männern und Frauen gebildet wurde, und hier die Änderung des mittleren Einkommens ermittelt wurde, 

wenn wir die Geschlechtskategorie von „männlich“ (= Referenzkategorie = Wert 0) auf „weiblich“ (= 

Wert 1) ändern, also genau umgekehrt als im vorhergehenden Fall. 

Zum Vergleich haben wir uns nun auch für den Fall der Regressionsanalyse ein 

Konfidenzintervall für den Regressionsparameter ausgeben lassen. Letzteres kann im Menü 

„Statistics…“ bei der Anforderung der Regressionsanalyse ausgewählt werden. Wir sehen, dass der 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

324 

plausible Bereich für das mittlere Bruttoeinkommen der Männer zwischen 73589.85 und 82023.87 USD 

liegt, und der plausible Bereich für das mittlere Bruttoeinkommen der Frauen um 4048.91 bis 15976.41 

USD darunter liegt. 

Ein Ergebnisbericht für die lineare Regressionsanalyse mit einem diskreten Prädiktor mit zwei 

Ausprägungen für das oben erläuterte Beispiel könnte wie folgt aussehen: „Eine einfache lineare 

Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) statistisch signifikanter Anteil der Varianz im 

Einkommen der untersuchten n = 100 Personen dadurch erklärt werden kann, ob die Personen männlich 

oder weiblich sind, F(1, 98) = 11.10, p < .001, R2 = .10; ein kleiner Effekt gemäß Cohen (1988). Gemäß 

des resultierenden Regressionsmodells verdienen Männer jährlich im Mittel etwa 78 tausend Euro (b = 

77806.86, t(98) = 36.62, p < .001). Frauen verdienen jährlich im Mittel etwa 10 tausend Euro weniger 

als Männer. Dieser Unterschied ist (mit 𝛼 = .005) signifikant (b = -10012.66, 𝛽𝑧 = -.32, t(98) = -3.33, p 

= .001).“ 

Am Konfidenzintervall (und prinzipiell auch schon an den Freiheitsgraden für den 

Signifikanztest des Regressionsparameters) erkennen wir auch, dass es sich um die exakt gleichen Werte 

wie für das Konfidenzintervalls der Mittelwertdifferenz im Rahmen des Student’schen t-Tests handelt, 

siehe Abbildung 11.1 oben. Das ist kein Zufall; in der Tat handelt es sich dabei um Ergebnisse einer 

völlig äquivalenten statistischen Berechnung, da in beiden Fällen die gleichen Annahmen getroffen 

wurden: intervallskalierte AV, unbekannte Varianz der AV in beiden Gruppen (= für beide 

Ausprägungen der UV), die Messwerte in beiden Gruppen (= für beide Ausprägungen der UV) sind 

unabhängig voneinander, die AV kann in beiden Gruppen (= für beide Ausprägungen der UV) durch 

eine Normalverteilung approximiert werden, und insbesondere ist die Varianz dieser Normalverteilung 

in beiden Gruppe dieselbe (Varianzgleichheit, -homogenität, Homoskedastizität). Die 

Regressionsanalyse mit Dummy-Kodierung für einen kategorialen Prädiktor mit zwei Ausprägungen ist 

für den Steigungsparameter also völlig äquivalent zu einem Student’schen t-Test. 
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Abbildung 11.2. Ergebnis einer einfachen linearen Regression mit dem Prädiktor Geschlecht und dem 

Kriterium Einkommen. 

Das zeigt allerdings einen Nachteil dieses Vorgehens auf: Während ungleiche Varianzen im 

Falle des t-Tests in der Praxis leicht durch Rückgriff auf den ohnehin durchgeführten t-Test nach Welch 

einfach berücksichtigt werden können (und beim Bericht der Ergebnisse oben auch berücksichtigt 

wurden, da der u.a. der signifikante Levene-Test auf einen möglichen Unterschied der 

Populationsvarianzen hinweist), geht die Regressionsanalyse von Varianzhomogenität aus. 

Grundsätzlich können auch hier ungleiche Varianzen im Rahmen der durchgeführten 

inferenzstatistischen Verfahren durch Rückgriff auf heteroskedastizitätskorrigierte Standardfehler 

berücksichtigt werden (siehe z.B. Rajh-Weber et al., 2025). 
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Ein diskreter Prädiktor mit mehr als zwei (kategorialen) Ausprägungen 

Mittels Dummy-Kodierung kann das oben illustrierte Vorgehen sehr einfach auf mehr als zwei 

Kategorien verallgemeinert werden. Bei einer kategorialen Variablen mit insgesamt 𝑘 Katgorien werden 

dafür 𝑘 − 1 Dummy-Variablen für die 𝑗 = 𝑘 − 1 Gruppen definiert, die nicht als Referenzkategorie 

fungieren sollen. Für die Dummy-Variablen 𝐷𝑗𝑖 gilt dann jeweils 𝐷𝑗𝑖 = 1, falls Person 𝑖 zur Gruppe 𝑗 

gehört, und 𝐷𝑗𝑖 = 0, falls Person 𝑖 nicht zur Gruppe 𝑗 gehört. Welche Gruppe bzw. Kategorie jeweils 

als Referenzkategorie gewählt wird, wirkt sich wiederum nur darauf aus, wie die Ergebnisse der 

entsprechenden Regressionsanalyse zu interpretieren sind. 

Dieses Vorgehen und die Interpretation der Ergebnisse wird im Folgenden am Beispiel 

folgender Fragestellung untersucht: Wie wirkt sich die Nationalität (Österreich, Deutschland, USA) auf 

das jährliche Bruttoeinkommen in Österreich für Angestellte mittleren Alters aus? Dazu wird der 

Datensatz „Kap12daten2.sav“ verwendet. 

In diesem Datensatz ist die Nationalität der jeweils (fiktiven) befragten Person durch die 

Variable Nation mit den Kategorien 0 = AUT (für Österreich), 1 = GER (für Deutschland) und 2 = USA 

(für die USA) kodiert. D.h., wir müssen in diesem Fall die oben beschriebene Dummy-Kodierung noch 

selbst durchführen. Dazu können wir einfach in SPSS unter Transform >> Compute Variable… zwei 

neue Variablen erzeugen. 

Für die erste der beiden Variablen wählen wir im Feld „Target Variable:“ z.B. die Bezeichnung 

AUTvsGER (die Variable soll uns also Unterschiede zwischen Österreich und Deutschland kodieren) 

und fügen dann im Feld „Numeric Expression:“ den Ausdruck „Nation = 1“ ein. Dabei nutzen wir, dass 

SPSS intern Bools’sche Variablen, d.h. Variablen, die nur „wahr“ oder „falsch“ sein können, ohnehin 

mit 1 (für „wahr“) und 0 (für „falsch“) kodiert. D.h., im Fall, dass für Person 𝑖 die Variable Nation den 

Wert 1 (für Deutschland) hat, ist der Ausdruck „Nation = 1“ wahr und die neue Variable AUTvsGER 

bekommt den Wert 1. Für Personen aus Österreich oder den USA ist der Ausdruck „Nation = 1“ 

hingegen immer falsch und die Variable bekommt den Wert 0. 

Für die zweite der beiden Variablen verfahren wir ganz analog. Wir nennen die Variable 

AUTvsUSA und fügen im Feld „Numeric Expression:“ nun den Ausdruck „Nation = 2“ ein. D.h. diese 
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Variable bekommt den Wert 1 genau dann, wenn die jeweilige Person aus den USA kommt (d.h., wenn 

die Variable Nation den Wert 2 hat), und den Wert 0 sonst (d.h., wenn die Person aus Österreich oder 

Deutschland kommt, d.h. die Variable Nation nicht den Wert 2 hat). 

Haben wir beide Dummy-Variablen erzeugt (bzw. existieren in der Datendatei 

„Kap11daten.sav“ auch bereits zwei entsprechend erzeugte Variablen mit den Bezeichnungen 

AUTvsGERvordefiniert und AUTvsUSAvordefiniert), können wir sie unter Analyze >> Regression >> 

Linear… als Prädiktoren in ein multiples Regressionsmodell mit dem Kriterium Einkommen einfügen. 

Im Menü „Statistics…“ fordern wir wiederum 95%-KI für die Regressionsparameter an. Die Ausgabe 

ist in Abbildung 11.3 gezeigt. 

 

Abbildung 11.3. Ausgabe für eine multiple Regression mit den beiden erzeugten Dummy-Variablen 

AUTvsGER und AUTvsUSA als Prädiktoren. 
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Am Schätzwert für den Achsenabschnitt a = 72800.53 USD können wir das mittlere 

Einkommen für Angestellte in Österreich ablesen. Der plausible Bereich, der einem 95%-KI entspricht 

liegt zwischen 69436.59 und 76164.47 USD. 

Am Schätzwert für das Regressionsgewicht der Variable AUTvsGER erkennen wir, dass das 

mittlere Einkommen im Mittel um 5911.53, 95%-KI [1154.20, 10668.86], unter demjenigen für 

Österreich liegt. Wir sehen zudem, dass der Unterschied (mit 𝛼 = .005) nicht signifikant ist, t(297) = -

2.45, p = .015. 

Am Schätzwert für das Regressionsgewicht der Variable AUTvsUSA erkennen wir schließlich, 

dass Angestellte in den USA im Mittel um 8413.19 USD, 95%-KI [3655.86, 13170.52], mehr verdienen 

als in Österreich. Dieser Unterschied ist (mit 𝛼 = .005) signifikant ist, t(297) = 3.48, p < .001. 

Auch hier gibt es wieder eine Äquivalenz mit den varianzanalytischen Verfahren, die wir in 

Kapitel 6 kennengelernt haben. Der Omnibustest für das multiple Regressionsmodell ist äquivalent zum 

Omnibustest der einfaktoriellen Varianzanalyse. Beide Modelle gehen auch wieder von 

Varianzhomogenität aus. Scheint diese nicht gegeben, kann für den regressionsanalytischen Ansatz 

wieder auf für Heteroskedastizität korrigierte Standardfehler zurückgegriffen werden (Rajh-Weber et 

al., 2025). Für den varianzanalytischen Zugang kann der in Kapitel 6 erläuterte Welch-Test durchgeführt 

werden. 

Interaktionen 

Sehr häufig ist gerade die kombinierte Wirkung mehrerer UV auf typische Werte der AV von Interesse. 

Um bei unserem Beispiel für dieses Kapitel zu bleiben: Unterscheidet sich der Unterschied für das 

typische Jahreseinkommen zwischen Männern und Frauen (das sog. Gender Wage Gap) etwa je nach 

Nation? Und falls ja, wie? 

Wie wir aus Kapitel 7 bereits wissen, handelt es sich hierbei um die Frage nach einer Interaktion 

zwischen den beiden Variablen: Ist die Wirkung einer Variablen (hier: Geschlecht) abhängig von der 

Ausprägung einer anderen (hier: Nationalität)? Für den Fall zweier diskreter Prädiktoren könnten wir 

diese Fragestellung auch mit den uns bereits bekannten Varianzanalysen untersuchen. Diese bieten 

häufig sogar den Vorteil der einfacheren Interpretierbarkeit im Vergleich zum regressionsanalytischen 
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Zugang, den wir im nächsten Abschnitt betrachten werden (Bühner et al., 2025). Die Interpretation des 

letzteren wird u.a. deshalb erschwert, weil sich die Ergebnisse für die hier illustrierte Dummy-Kodierung 

der Prädiktoren stets auf eine Referenzkategorie beziehen und daher eine inferenzstatistische Analyse 

auf den Vergleich mit dieser Kategorie beschränkt bleibt. Falls allerdings hauptsächlich die Vorhersage 

typischer AV-Werte für gegebene UV-Werte im Vordergrund steht und die Interpretation der Parameter 

nicht interessiert, ist wiederum das Regressionsmodell einfacher zu handhaben (Bühner et al., 2025). 

Das Regressionsmodell bietet zudem den Vorteil größerer Flexibilität, indem es auch die 

Berücksichtigung von Interaktionen zwischen einer diskreten und einer stetigen oder auch zwischen 

zwei stetigen Variablen erlaubt. Diese Fälle lassen sich in der Tat mit den varianzanalytischen 

Methoden, die wir in den Kapiteln 6-8 kennengelernt haben, nicht behandeln. In diesen Fällen spricht 

man auch von Moderation oder moderierter Regression (Bühner et al., 2025): die Ausprägung einer UV 

wirkt sich auf den linearen Zusammenhang zwischen der anderen UV und typischen Ausprägungen der 

AV aus. Damit werden wir uns in den letzten beiden Abschnitten dieses Kapitels befassen. 

Mehrere diskrete Prädiktoren 

Wir bleiben beim Beispiel mit den beiden Prädiktoren Geschlecht und Nationalität, mithilfe 

derer wir das typische Jahreseinkommen von Angestellten mittleren Alters vorhersagen möchten. Die 

Daten dafür finden wir nach wie vor in der Datei „Kap11daten2.sav“, die Sie im elektronischen 

Ergänzungsmaterial zu diesem Dokument finden, das Sie unter https://osf.io/9tcx3/ herunterladen 

können. 

Um ein Regressionsmodell mit allen möglichen Interaktionstermen für die beiden Prädiktoren 

zu illustrieren, werden im Folgenden zuerst alle dafür benötigten Dummy-Variablen erzeugt, und erst 

im Anschluss erläutert, inwiefern diese alle möglichen Kombinationen aus den beiden kategorialen 

Variablen berücksichtigen. Die drei Dummy-Variablen für die beiden Prädiktoren wurden im 

vorhergehenden Abschnitt erzeugt (bzw. lagen für das Geschlecht bereits vor) und liegen in dem 

Datensatz bereits mit den Bezeichnungen Geschlecht, AUTvsGERvordefiniert, und 

AUTvsUSAvordefiniert vor. Um die Interaktion zwischen den beiden Variablen für alle möglichen 

Kombinationen aus ihnen zu berücksichtigen, müssen wir nun noch zwei weitere Dummy-Variablen 

https://osf.io/9tcx3/
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erzeugen. Dazu geben wir unter Transform >> Compute Variable… erst einmal einen Variablennamen 

unter „Target Variable:“ an. Dieser kann z.B. „Geschlecht_X_AUTvsGER“ sein. In der Datendatei gibt 

es bereits eine entsprechende Variable mit der Bezeichnung Geschlecht_X_AUTvsGERvordefiniert, die 

für einen Vergleich mit der eigens erzeugten Variablen verwendet werden kann. Im Feld „Numeric 

Expression:“ geben wir Folgendes ein: „Geschlecht * AUTvsGERvordefiniert“; eine Erläuterung folgt 

in Kürze. Ganz analog gehen wir für die andere, zusätzlich noch benötigte Dummy-Variable vor. Diese 

können wir z.B. mit „Geschlecht_X_AUTvsUSA“ bezeichnen, es existiert aber auch wieder bereits eine 

entsprechende Variable unter der Bezeichnung „Geschlecht_X_AUTvsUSAvordefiniert“. Im Feld 

„Numeric Expression:“ geben wir für diese Variable „Geschlecht * AUTvsUSAvordefiniert“ ein. 

Schauen wir uns nun alle unsere Dummy-Variablen noch einmal genau an. Die Variable 

Geschlecht hat genau dann den Wert 1, wenn das Geschlecht einer Person weiblich ist, sonst hat sie den 

Wert 0. Die Variable AUTvsGERvordefiniert hat genau dann den Wert 1, wenn die Nationalität einer 

Person Deutschland ist, sonst hat sie den Wert 0. Die Variable AUTvsUSAvordefiniert hat genau dann 

den Wert 1, wenn die Nationalität einer Person USA ist, sonst hat sie den Wert 0. Die Variable 

Geschlecht_X_AUTvsGERvordefiniert hat genau dann den Wert 1, wenn das Geschlecht einer Person 

weiblich ist und gleichzeitig die Nationalität der Person Deutschland ist, sonst hat sie den Wert 0. Die 

Variable Geschlecht_X_AUTvsUSAvordefiniert hat genau dann den Wert 1, wenn das Geschlecht einer 

Person weiblich ist und gleichzeitig die Nationalität der Person USA ist, sonst hat sie den Wert 0. 

Inwiefern bildet das alle Kombinationsmöglichkeiten aus den beiden Variablen ab? Dazu 

betrachten wir das gesamte Regressionsmodell mit allen fünf Dummy-Variablen, die für die Reihenfolge 

des vorhergehenden Absatzes kurz mit 𝐷𝑖𝑗 mit 𝑗 = 1, … 5 bezeichnet werden: 

𝑌𝑖 ~ 𝑁(𝛼 + 𝛽1𝐷1𝑖 + 𝛽2𝐷2𝑖 + 𝛽3𝐷3𝑖 + 𝛽4𝐷4𝑖 + 𝛽5𝐷5𝑖, 𝜎2). 

Betrachten wir nun eine männliche Person mit Nationalität Österreich. In diesem Fall sind alle 

Dummy-Variablen gleich Null und es bleibt 

𝑌𝑖 ~ 𝑁(𝛼, 𝜎2), 
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d.h. der Erwartungswert des Jahreseinkommens für männliche Personen mit Nationalität 

Österreich ist durch den Achsenabschnitt 𝛼 gegeben. 

Für weibliche Personen mit Nationalität Österreich gilt, dass die Dummy-Variable Geschlecht 

gleich Eins ist, d.h. 𝐷1𝑖 = 1, während alle anderen Dummy-Variablen gleich Null sind. Der 

Erwartungswert des Jahreseinkommens für weibliche Personen mit Nationalität Österreich ist demnach 

durch 𝛼 + 𝛽1 gegeben. 

Für männliche Personen mit Nationalität Deutschland sind die Dummy-Variablen Geschlecht 

sowie AUTvsGERvordefiniert gleich Eins, d.h. 𝐷1𝑖 = 𝐷2𝑖 = 1, während alle übrigen Dummy-Variablen 

nach wie vor gleich Null sind. Daraus ergibt sich der Erwartungswert des Jahreseinkommens für 

männliche Personen mit Nationalität Deutschland zu 𝛼 + 𝛽1 + 𝛽2. 

Für weibliche Personen mit Nationalität Deutschland sind die Dummy-Variablen Geschlecht, 

AUTvsGERvordefiniert, sowie Geschlecht_X_AUTvsGERvordefiniert gleich Eins, d.h. 𝐷1𝑖 = 𝐷2𝑖 =

𝐷4𝑖 = 1, während die übrigen beiden Dummy-Variablen nach wie vor gleich Null sind. Daraus ergibt 

sich der Erwartungswert des Jahreseinkommens für männliche Personen mit Nationalität Deutschland 

zu 𝛼 + 𝛽1 + 𝛽2 + 𝛽4. 

Für männliche Personen mit Nationalität USA sind die Dummy-Variablen Geschlecht sowie 

AUTvsUSAvordefiniert gleich Eins, d.h. 𝐷1𝑖 = 𝐷3𝑖 = 1, während alle übrigen Dummy-Variablen gleich 

Null sind. Daraus ergibt sich der Erwartungswert des Jahreseinkommens für männliche Personen mit 

Nationalität USA zu 𝛼 + 𝛽1 + 𝛽3. 

Für weibliche Personen mit Nationalität USA sind schließlich die Dummy-Variablen 

Geschlecht, AUTvsUSAvordefiniert, sowie Geschlecht_X_AUTvsUSAvordefiniert gleich Eins, d.h. 

𝐷1𝑖 = 𝐷3𝑖 = 𝐷5𝑖 = 1, während die übrigen beiden Dummy-Variablen gleich Null sind. Daraus ergibt 

sich der Erwartungswert des Jahreseinkommens für männliche Personen mit Nationalität USA zu 𝛼 +

𝛽1 + 𝛽3 + 𝛽5. 

Wir sehen: Durch die fünf Dummy-Variablen sind in der Tat alle Kombinationen der beiden 

Prädiktoren abgedeckt. Indem wir nun alle Dummy-Variablen als Prädiktoren in ein entsprechendes 
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Regressionsmodell in SPSS hinzufügen, können wir eine Schätzung dieser Parameter vornehmen. Der 

entsprechende Teil der Ausgabe ist in Abbildung 11.4 gezeigt. Zum Vergleich sind in Abbildung 11.5 

auch die Tabelle mit deskriptiven Statistiken sowie den Resultaten einer zweifaktoriellen 

Varianzanalyse mit denselben beiden Prädiktoren (bzw. Faktoren) und derselben AV angegeben. Wir 

sehen, dass es sich bei dem Schätzwert für den Achsenabschnitt 𝑎 = 77806.86 in der Tat um das mittlere 

Jahreseinkommen von männlichen Personen mit Nationalität Österreich handelt. Für weibliche 

Personen mit Nationalität Österreich erhalten wir 𝑏1 = 77806.86 – 10012.66 = 67794.20, was wiederum 

mit dem entsprechenden Wert der Tabelle für die deskriptiven Statistiken in Abbildung 11.5 

übereinstimmt. Genauso können wir uns durch Vergleich mit der Übereinstimmung aller anderen 

Schätzwerte mit den Mittelwerten entsprechend der obigen Erläuterungen überzeugen. 

Zusätzlich sehen wir auch die anfangs angesprochene schwierigere Interpretierbarkeit des 

regressionsanalytischen Zugangs durch Bezug auf eine einzelne Referenzkategorie (hier: männliche 

Personen mit Nationalität Österreich). Wie in Abbildung 11.4 ersichtlich, unterscheiden sich die 

Regressionskoeffizienten für die beiden Variablen Geschlecht_X_AUTvsGERvordefiniert und 

Geschlecht_X_AUTvsUSAvordefiniert nicht signifikant von Null. D.h. insbesondere, dass die 

Jahreseinkommen von weiblichen Personen mit Nationalität Deutschland im Mittel nicht signifikant 

größer (positives Vorzeichen des Schätzwerts 𝑏4 = 5346.74) sind als diejenigen von männlichen 

Personen mit Nationalität Österreich, sowie die Jahreseinkommen von weiblichen Personen mit 

Nationalität USA nicht signifikant kleiner (negatives Vorzeichen des Schätzwerts 𝑏5 = -4463.98) sind 

als die Jahreseinkommen derselben Referenzkategorie. Allerdings wissen wir nicht, ob sich die beiden 

Jahreseinkommen signifikant von denen weiblicher Personen mit Nationalität Österreich oder 

irgendeiner anderen Kategorie unterscheiden. Aufgrund dieser einzelnen paarweisen Vergleiche lässt 

sich also nicht schließen, ob über alle Kategorien hinweg signifikante Haupteffekte oder Interaktionen 

vorliegen. Diese Information lässt sich wiederum leicht an der Ausgabe für eine entsprechende 

zweifaktorielle Varianzanalyse ablesen, siehe Abbildung 11.5. 
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Abbildung 11.4. Schätzungen der Regressionsgewichte für ein Regressionsmodell mit Interaktion 

zweier diskreter Prädiktoren. 

 

Abbildung 11.5. Teil der Ausgabe für eine zweifaktorielle Varianzanalyse mit den Faktoren Geschlecht 

(2 Stufen) und Nationalität (3 Stufen) und der AV Einkommen. 
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Ein diskreter Prädiktor und ein stetiger Prädiktor 

Wir betrachten nun ein Regressionsmodell mit einem stetigen und einem diskreten Prädiktor. Dazu 

betrachten wir den Datensatz „Kap11daten3.sav“, der nun neben den Jahreseinkommen für das Jahr 

2020 für die bisher betrachteten Populationen auch die entsprechenden Jahreseinkommen für die Jahre 

2015, 2010 und 2005 enthält. Die Jahreseinkommen sind jeweils für die unterschiedliche Kaufkraft (für 

USD) in diesen Jahren bereinigt. D.h. die unterschiedlichen Jahreseinkommen sind nicht auf 

Veränderungen des Geldwerts selbst zurückzuführen. 

Zu Illustrationszwecken möchten wir nun wissen, wie die mittleren Jahreseinkommen sich über 

die Zeit verändern und ob diese Veränderung unterschiedlich für die beiden betrachteten Geschlechter 

verläuft (der:die interessierte Leser:in kann sich gerne selbst zusätzlich noch ansehen, ob diese 

Veränderung unterschiedlich für die beiden Geschlechter und die drei untersuchten Nationen verläuft). 

Zwar könnten wir direkt mit dem Erhebungsjahr als Prädiktor arbeiten, allerdings würden wir in diesem 

Fall inhaltlich wenig sinnvolle Schätzwerte für den Achsenabschnitt erhalten, da dieser Wert dann dem 

mittleren Einkommen (von Männern und Frauen) im Jahre 0 entsprechen würde. Stattdessen möchten 

wir, dass unsere Achsenabschnitte dem mittleren Einkommen zu Beginn des Untersuchungszeitraums 

entsprechen sollen. Dafür können wir eine neue Variable erzeugen, indem wir vom Erhebungsjahr den 

Wert 2005 abziehen (= das am längsten zurückliegende Jahr im Datensatz). Eine solche Variable liegt 

im Datensatz bereits unter der Bezeichnung „Erhebungsjahr_seit_2005“ vor. 

Neben diesem stetigen Prädiktor benötigen wir noch eine weitere Dummy-Variable, die zulässt, 

dass der Steigungsparameter des linearen Zusammenhangs zwischen Erhebungsjahr und mittlerem 

Einkommen sich zwischen den beiden untersuchten Geschlechtern unterscheidet. Dafür verwenden wir 

wieder dieselbe Vorgangsweise wie im vorhergehenden Abschnitt. Wir konstruieren zuerst die Dummy-

Variable und machen uns im Anschluss klar, weshalb die so erzeugte Variable genau diese Funktion 

erfüllt. 

Zur Erzeugung der Dummy-Variablen multiplizieren wir wieder unsere beiden Prädiktoren. 

D.h. wir multiplizieren die Variable Geschlecht (die bereits eine Dummy-Variable für die beiden 

betrachteten Geschlechtskategorien ist) mit der Variable Erhebungsjahr_seit_2005. Eine entsprechend 
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erzeugte Variable liegt im Datensatz bereits mit der nahezu unleserlich sperrigen Bezeichnung 

„Geschlecht_X_Erhebungsjahr_seit_2005“ vor. An der Bezeichnung lässt sich schon erkennen, dass es 

sich dabei um die Interaktion zwischen dem diskreten Prädiktor Geschlecht und dem stetigen Prädiktor 

Erhebungsjahr_seit_2005 handelt. Die Bedeutung des Begriffs Interaktion bleibt dabei dieselbe wie 

schon bei Interaktionen zwischen diskreten Prädiktoren: die Wirkung der einen Variablen hängt von der 

Ausprägung der anderen Variablen ab. Interaktionen sind symmetrisch. D.h. für das vorliegende 

Beispiel kann diese Bedeutung auf zwei völlig gleichwertige Arten gelesen werden. Einerseits kann 

damit gefragt sein, wie sich das Erhebungsjahr auf die Abhängigkeit des Jahreseinkommens vom 

Geschlecht auswirkt. Andererseits kann damit aber auch gefragt sein, wie sich das Geschlecht auf die 

Abhängigkeit des Jahreseinkommens vom Erhebungsjahr auswirkt. 

Diese Symmetrie ist auch am gesamten Regressionsmodell ersichtlich: 

𝑌𝑖 ~ 𝑁(𝛼 + 𝛽1𝐷𝑖 + 𝛽2𝑋𝑖 + 𝛽12(𝐷𝑖 ∙ 𝑋𝑖), 𝜎2). 

Aufgrund der Kommutativität der Multiplikation spielt es dabei keine Rolle, ob im Ausdruck 

hinter dem Regressionsgewicht 𝛽12 für die Interaktion 𝐷𝑖 ∙ 𝑋𝑖 oder 𝑋𝑖 ∙ 𝐷𝑖 steht. Ferner kann man sich 

leicht davon überzeugen, dass auch beide sprachlichen Interpretationen von oben in diesem 

Regressionsmodell ihren Ausdruck finden. Einerseits kann der Ausdruck für den Mittelwert im 

Regressionsmodell wie folgt geschrieben werden: 

𝜇𝑖 = 𝐸(𝑌𝑖|𝐷𝑖 = 𝑑𝑖 , 𝑋𝑖 = 𝑥𝑖) = 𝛼 + (𝛽1 + 𝛽12𝑥𝑖)𝑑𝑖 + 𝛽2𝑥𝑖, 

d.h., die Änderung des Erwartungswert für die AV mit der Dummy-Variablen 𝐷𝑖 = 𝑑𝑖 hängt 

von der Ausprägung der stetigen Variablen 𝑋𝑖 = 𝑥𝑖 ab. Dies entspricht der Frage von oben: Wie wirkt 

sich das Erhebungsjahr auf die Abhängigkeit des Jahreseinkommens vom Geschlecht aus? 

Andererseits kann der Ausdruck für den Mittelwert im Regressionsmodell genauso wie folgt 

geschrieben werden: 

𝜇𝑖 = 𝐸(𝑌𝑖|𝐷𝑖 = 𝑑𝑖 , 𝑋𝑖 = 𝑥𝑖) = 𝛼 + 𝛽1𝑑𝑖 + (𝛽2 + 𝛽12𝑑𝑖)𝑥𝑖, 
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d.h., die Änderung des Erwartungswert für die AV mit der stetigen Variablen 𝑋𝑖 = 𝑥𝑖 hängt von 

der Ausprägung der Dummy-Variablen 𝐷𝑖 = 𝑑𝑖 ab. Dies entspricht der Frage von oben: Wie wirkt sich 

das Geschlecht auf die Abhängigkeit des Jahreseinkommens vom Erhebungsjahr aus? 

Wie sehen die Antworten auf diese Fragen auf Grundlage unseres Datensatzes aus? Dazu fügen 

wir die Variablen Geschlecht, Erhebungsjahr_seit_2005, und Geschlecht_X_Erhebungsjahr_seit_2005 

allesamt als Prädiktoren in ein Regressionsmodell in SPSS unter Analyze >> Regression >> Linear… 

ein. Der für uns hier wesentliche Teil der Ausgabe ist in Abbildung 11.6 gezeigt. 

Wir sehen, dass das mittlere Einkommen im ersten Erhebungsjahr 2005 für männliche Personen 

bei 68779.68 USD lag. Das mittlere Einkommen für weibliche Personen lag um 11301.66 USD (mit 𝛼 

= .005) signifikant darunter, t(1196) = -6.68, p < .001. Mit jedem Jahr seit 2005 nahm das mittlere 

Einkommen von männlichen Personen um 709.12 USD zu. Dieser Zuwachs unterscheidet sich (mit 𝛼 = 

.005) signifikant von Null, t(1196) = 5.54, p < .001. Für weibliche Personen war der Zuwachs im Mittel 

um 32.96 USD geringer; dieser Unterschied ist nicht signifikant, t(1196) = -0.18, p = .856. Kurz und 

knapp bedeutet das in etwa: 2005 haben Frauen im Mittel pro Jahr in etwa 11000 USD weniger verdient 

als Männer und daran hat sich bis 2020 nicht viel verändert, auch wenn beide Geschlechter 2020 deutlich 

mehr pro Jahr verdienen (in etwa 15 ∙ 700 = 10500 USD mehr als 2005). Relativ (zum 

Jahreseinkommen der Männer) ist die Differenz demnach kleiner geworden, während die Differenz in 

absoluter Kaufkraft sich kaum verändert hat. 

 

Abbildung 11.6. Ausgabe für ein Regressionsmodell mit einem diskreten und einem stetigen Prädiktor 

und deren Interaktion. 
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Ein Ergebnisbericht für die lineare Regressionsanalyse mit einem diskreten Prädiktor mit zwei 

Ausprägungen, einem stetigen Prädiktor und deren Interaktion für das oben erläuterte Beispiel könnte 

wie folgt aussehen: „Eine multiple lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) statistisch 

signifikanter Anteil der Varianz im Einkommen der untersuchten n = 1200 Personen durch die 

Prädiktoren Geschlecht, Erhebungsjahr seit 2005 und deren Interaktion aufgeklärt werden kann, F(3, 

1196) = 62.99, p < .001, R2 = .14; ein mittlerer Effekt gemäß Cohen (1988). Betrachtet man die einzelnen 

Regressionsparameter, verdienten Männer im Jahr 2005 im Mittel etwa 69 tausend Euro jährlich (b = 

68779.68, t(1196) = 57.46, p < .001). Im selben Jahr verdienten Frauen im Durchschnitt 11 tausend Euro 

weniger (b = -11301.66, 𝛽𝑧 = -.30, t(1196) = -6.68, p < .001). Diese Differenz ist (mit 𝛼 = .005) statistisch 

signifikant. 

Bei Männern erwartet man bei einem Anstieg um 1 Jahr einen Anstieg im mittleren 

Jahreseinkommen um etwa 700 Euro (b = 709.12, 𝛽𝑧 = .21, t(1196) = 5.54, p < .001). Dieser Anstieg ist 

(mit 𝛼 = .005) ebenfalls statistisch signifikant. Bei Frauen erwartet man Anstieg um 1 Jahr einen Anstieg 

im mittleren Jahreseinkommen um etwa 670 Euro. Der Unterschied im Zusammenhang des 

Erhebungsjahres und des Einkommens ist zwischen Männern und Frauen (mit 𝛼 = .005) statistisch nicht 

signifikant (b = -32.96, 𝛽𝑧 = -.01, t(1196) = -0.18, p = .856).“ 

Zwei stetige Prädiktoren 

Als letzten Fall wird die Interaktion zwischen zwei stetigen Prädiktoren betrachtet. Dazu betrachten wir 

den Datensatz „Kap11daten4.sav“, der sich vom Datensatz im vorhergehenden Abschnitt lediglich 

dadurch unterscheidet, dass nun auch jährliche Einkommen für Männer und Frauen unterschiedlichen 

Alters zum Erhebungszeitpunkt vorliegen. Insgesamt werden drei Altersgruppen betrachtet, die hier zu 

Illustrationszwecken als kontinuierliche Variable aufgefasst werden, die nur mit einer sehr groben Skala 

(20 Jahre, 40 Jahre, 60 Jahre) gemessen wird. 

Die Fragestellung, die wir in diesem Abschnitt erhellen wollen, lautet: Wie verändert sich das 

mittlere Einkommen über die Zeit hinweg und hängt diese Veränderung vom Alter der untersuchten 

Angestellten ab? Wir fragen also nach der Interaktion zwischen dem Erhebungsjahr und dem Alter der 

befragten Personen. 
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Auch dafür empfiehlt es sich, zuerst wieder das Erhebungsjahr so zu transformieren, dass der 

Achsenabschnitt das mittlere Einkommen um ersten Erhebungsjahr (d.h. 2005) angibt. Für das Alter 

bietet es sich an, dieses um das mittlere Alter von 40 Jahren zu zentrieren. Die Interaktion zwischen den 

beiden stetigen Variablen kann anschließend wieder durch eine neue Variable modelliert werden, die 

dem Produkt aus dem transformierten Erhebungsjahr und dem zentrierten Alter der befragten Personen 

entspricht. Alle drei Variablen sind bereits im Datensatz unter den Bezeichnungen 

„Erhebungsjahr_seit_2005“, „Alter_zentriert“ und „Alter_X_Erhebungsjahr“ enthalten. 

Verwendung der drei Variablen Alter_zentriert, Erhebungsjahr_seit_2005, und 

Alter_X_Erhebungsjahr als Prädiktoren in einer Regressionsanalyse resultiert in der in Abbildung 11.7 

gezeigten Ausgabe. Wir sehen, dass Angestellte mittleren Alters (40 Jahre) im ersten Jahr der 

Erhebungen (d.h. 2005) im Mittel ein Bruttoeinkommen von 56966.07 USD hatten. Für Angestellte 

dieses Alters bei den jeweiligen Erhebungen erhöhte sich das Einkommen mit jedem Jahr seit 2005 um 

713.84 USD, was einer (mit 𝛼 = .005) signifikanten Erhöhung entspricht, t(3596) = 13.09, p < .001. Für 

das Erhebungsjahr 2005 erhöhte sich zudem das Einkommen mit jedem zusätzlichem Jahr des 

Lebensalters der Angestellten um 632.24 USD, was ebenfalls einer (mit 𝛼 = .005) signifikanten 

Erhöhung entspricht, t(3596) = 20.24, p < .001. Die Moderation der Veränderung des Einkommens mit 

dem Erhebungsjahr durch das Alter der befragten Personen zum jeweiligen Erhebungszeitpunkt ist 

ebenfalls signifikant, t(3596) = 4.18, p < .001. 

 

Abbildung 11.7. Ausgabe für eine Regressionsanalyse mit zwei stetigen Prädiktoren und deren 

Interaktion. 
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Die Auswirkung des Lebensalters zum Zeitpunkt der Befragung auf die Veränderung des 

Einkommens mit dem Erhebungsjahr kann eventuell am einfachsten dadurch illustriert werden, dass 

einige bestimmte Ausprägungen der Moderatorvariable (hier wegen der Fragestellung das Lebensalter 

der befragten Personen) herausgegriffen werden und der lineare Zusammenhang zwischen dem 

(anderen) Prädiktor und typischen Ausprägungen der AV jeweils für diese bestimmten Werte angegeben 

wird. Im vorliegenden Beispiel wird dafür der lineare Zusammenhang zwischen Erhebungsjahr und 

mittlerem Einkommen für 20-, 40- und 60-Jährige angegeben. 

Für 20-jährige erhöhte sich das mittlere Einkommen mit jedem Jahr seit 2005 im Mittel lediglich 

um 713.84 − 20 ∙ 13.97 = 434.44 USD. Für 40-Jährige erhöhte sich das mittlere Einkommen mit 

jedem Jahr seit 2005 im Mittel hingegen um 713.84 USD, wie oben bereits angegeben. Für 60-Jährige 

erhöhte sich das mittlere Einkommen mit jedem Jahr seit 2005 im Mittel um 713.84 + 20 ∙ 13.97 =

993,24 USD. D.h. mit jedem zusätzlichen Lebensjahr stieg die Erhöhung des mittleren Einkommens 

mit jedem Jahr seit 2005 um zusätzliche 13.97 USD an. 
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Übungsaufgaben 

Die im Folgenden eventuell benötigten Datensätze finden Sie im elektronischen Ergänzungsmaterial zu 

diesem Dokument, das Sie unter https://osf.io/9tcx3/ herunterladen können. 

Beispiel 11.1 

Welche Aussage/n zu diskreten Prädiktoren in der linearen Regressionsanalyse trifft/treffen zu? 

(a) Bei der Dummy-Kodierung fungiert die Kategorie, die mit 0 kodiert wurde, als 

Referenzkategorie. 

(b) Für eine kategoriale Variablen mit insgesamt k Kategorien, müssen k Dummy-Variablen 

definiert werden. 

(c) Der Steigungsparameter einer Dummy-Variablen bildet den Mittelwert der Kategorie ab, die 

mit 1 kodiert wurde. 

(d) Die Teststatistik eines Student’schen t-Tests entspricht der Teststatistik des 

Steigungsparameters in einer linearen Regressionsanalyse mit Dummy-Kodierung für (exakt) 

einen dichotomen Prädiktor. 

Beispiel 11.2 

Welche Aussage/n zu Interaktionseffekten in der linearen Regressionsanalyse trifft/treffen zu? 

(a) Mit einem Interaktionseffekt kann beschrieben werden wie sich der Zusammenhang zwischen 

einem Prädiktor und dem Kriterium je nach Ausprägung eines anderen Prädiktors ändert. 

(b) In der linearen Regressionsanalyse kann ein Interaktionseffekt hinzugefügt werden, indem man 

das Produkt der interessierenden unabhängigen Variablen als weiteren Prädiktor in das Modell 

aufnimmt. 

(c) In einem linearen Regressionsmodell mit einem dichotomen dummy-kodierten Prädiktor X1, 

einem stetigen Prädiktor X2 und deren Interaktion, beschreibt der Steigungsparameter des 

Interaktionseffekts wie sich der Zusammenhang zwischen X2 und dem Kriterium Y ändert, 

wenn X1 von 0 auf 1 steigt. 

(d) In einem linearen Regressionsmodell mit zwei dichotomen dummy-kodierten Prädiktoren X1, 

X2 und deren Interaktion, beschreibt der Achsenabschnitt die mittlere Ausprägung in Y, wenn 

X1 den Wert 0 und X2 den Wert 1 hat. 

https://osf.io/9tcx3/
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Beispiel 11.3 

Eine Freundin, die bei der Suchtpräventionsstelle arbeitet, bittet Sie, ihr zu zeigen, wie man mittels 

linearer Regressionsanalyse überprüfen kann, ob sich zwei Gruppen im Mittel unterscheiden. In ihrer 

Studie möchte sie vergleichen, ob Personen mit und ohne Spielsucht sich hinsichtlich des mittleren 

Restgeldbetrags unterscheiden, den sie nach einem Besuch ins Casino übrighaben. Ist der 

Restgeldbetrag positiv, haben die Personen beim Casinobesuch Geld dazugewonnen (relativ zu dem, 

was sie ausgeben wollten), ist der Restgeldbetrag negativ, haben die Personen Geld verloren. 

Berechnen Sie eine lineare Regressionsanalyse mit dem diskreten Prädiktor addiction (0 = keine 

Spielsucht, 1 = Spielsucht) und dem Kriterium balance_pre und schreiben Sie einen Ergebnisbericht. 

Verwenden Sie dafür den Datensatz „Kap12UE3.sav“ und ein Signifikanzniveau von 0.5%. Hinweis: 

Für dieses (fiktive) Beispiel können Sie davon ausgehen, dass die für die lineare Regression 

notwendigen Annahmen allesamt erfüllt sind. 

Beispiel 11.4 

Öffnen Sie die Datei „Kap12UE4.sav“. In diesem (fiktiven) Datensatz, wurde Personen ein 

Frustrationstoleranzfragebogen und ein ADHS-Fragebogen vorgegeben. Zusätzlich wurde ermittelt, ob 

die Personen eine offizielle ADHS Diagnose vorliegen haben und wenn ja, welches ADHS Medikament 

(Ritalin oder Adderall) sie nehmen. Ihr Kollege möchte diese Daten verwenden, um einige Analysen in 

SPSS zu rechnen. Weil er sich mit SPSS allerdings nicht gut auskennt, bittet er Sie einige Variablen für 

ihn zu transformieren: 

(a) Die Variable ADHS Diagnose (diagnosis) soll dummy-kodiert werden, wobei die 

Referenzkategorie keine ADHS Diagnose sein soll. 

(b) Die Variable ADHS Medikation (medication) soll ebenfalls in Dummy-kodierte Variablen 

umgewandelt werden, wobei keine Medikation die Referenzkategorie sein soll. 

(c) Die Variable Frustrationstoleranz (tolerance) soll zentriert werden. 

Ferner erzählt Ihr Kollege Ihnen, dass er das folgende lineare Regressionsmodell verwenden 

möchte: 𝑎𝑑ℎ𝑑̂𝑖 = 𝛽̂0 + 𝛽̂1𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠𝑖 + 𝛽̂2𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒_𝑐𝑒𝑛𝑡𝑖 + 𝛽̂3𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠𝑖𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒_𝑐𝑒𝑛𝑡𝑖. 

Berechnen Sie die dafür notwendige Interaktionsvariable. 
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Beispiel 11.5 

In der Studie der Suchtpräventionsstelle (Beispiel 12.3) wurde außerdem eine Intervention durchgeführt, 

bei der den Teilnehmer*innen Übungen zur Impulskontrolle gezeigt wurden. Der Datensatz 

„Kap12UE3.sav“ beinhaltet u.a. Informationen über den Restgeldbetrag nach dem letzten Casinobesuch 

vor der Intervention (balance_pre), den Restgeldbetrag nach dem ersten Casinobesuch nach der 

Intervention (balance_post) und über das Vorliegen einer Spielsucht (addiction). Die 

Suchtpräventionsstelle ist daran interessiert, ob der Zusammenhang des Restgeldbetrags vor und nach 

der Intervention unterschiedlich ist, je nachdem ob die Person spielsüchtig ist oder nicht.  

Berechnen Sie, um diese Fragestellung zu beantworten, eine lineare Regressionsanalyse zur 

Vorhersage von balance_post, mit dem diskreten Prädiktor addiction, dem stetigen Prädiktor 

balance_pre und deren Interaktion addict_X_balance_pre und schreiben Sie dafür einen 

Ergebnisbericht. Verwenden Sie ein Signifikanzniveau von α = .005. Hinweis: Für dieses (fiktive) 

Beispiel können Sie wiederum davon ausgehen, dass die für die lineare Regression notwendigen 

Annahmen allesamt erfüllt sind. 

Beispiel 11.6 

Öffnen Sie die Datei „Kap12UE6.sav“. Dieser ist eine Erweiterung zum (fiktiven) Datensatz in Beispiel 

12.4, in dem Personen ein Frustrationstoleranzfragebogen und ein ADHS-Fragebogen vorgegeben 

wurde. Zusätzlich wurde ermittelt, ob die Personen eine offizielle ADHS Diagnose vorliegen haben. Die 

erweiterte Datei „Kap12UE6.sav“ beinhaltet außerdem eine mit 0 und 1 kodierte Dummy-Variable der 

ADHS Diagnose (NOvsDIAG), die zentrierte Variable Frustrationstoleranz (c_tolerance) und deren 

Produkt (NOvsDIAG_X_ c_tol). 

Verwenden Sie das folgende Regressionsmodell zur Schätzung der Regressionskoeffizienten: 

𝑎𝑑ℎ𝑑̂𝑖 = 𝛽̂0 + 𝛽̂1𝑁𝑂𝑣𝑠𝐷𝐼𝐴𝐺𝑖 + 𝛽̂2𝑐_𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑖 + 𝛽̂3𝑁𝑂𝑣𝑠𝐷𝐼𝐴𝐺_𝑋_𝑐_𝑡𝑜𝑙𝑖  

Erstellen Sie im Anschluss einen Ergebnisbericht und verwenden Sie ein Signifikanzniveau von 

0.5%. In dem Ergebnisbericht soll, neben APA-Richtlinien konformer Berichterstattung der statistischen 

Kennwerte, auch explizit beschrieben werden wie der Interaktionseffekt zu interpretieren ist. Hinweis: 
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Für dieses (fiktive) Beispiel können Sie wieder davon ausgehen, dass die für die lineare Regression 

notwendigen Annahmen allesamt erfüllt sind. 

Beispiel 11.7 

Der Datensatz „Kap12UE6.sav“ enthält neben der Information über eine ADHS-Diagnose auch 

Information darüber, welches Medikament (Ritalin oder Adderall) eingenommen wird, sofern eine 

Diagnose vorliegt. Die Variable Medikament hat daher 3 Ausprägungen: kein Medikament, Ritalin, 

Adderall. Für diese kategoriale Variable wurden die entsprechenden Dummy-Variablen erstellt 

(NONEvsRIT, NONEvsADD) und jeweils die Interaktionsvariablen mit der zentrierten 

Frustrationstoleranz berechnet (NONEvsRIT_X_c_tol, NONEvsADD_X_c_tol).  

Verwenden Sie ein lineares Regressionsmodell, in dem der ADHS-Score (adhd) durch die 

unabhängigen Variablen Frustrationstoleranz (c_tolerance), Medikament (NONEvsRIT, NONEvsADD) 

und deren Interaktion vorhergesagt wird, zur Schätzung der Regressionskoeffizienten. 

Erstellen Sie im Anschluss einen Ergebnisbericht und verwenden Sie ein Signifikanzniveau von 

α = .05. In dem Ergebnisbericht soll, neben APA-Richtlinien konformer Berichterstattung der 

statistischen Kennwerte, auch explizit beschrieben werden wie der Interaktionseffekt zu interpretieren 

ist. Hinweis: Für dieses (fiktive) Beispiel können Sie wieder davon ausgehen, dass die für die lineare 

Regression notwendigen Annahmen allesamt erfüllt sind. 

Beispiel 11.8 

In Kapitel 5 wurde ein unabhängiger t-Test verwendet, um der Frage nachzugehen, ob sich der 

IQ von (fiktiven) Psychologiestudierenden im Mittel von den (fiktiven) BWL-Studierenden 

unterscheidet. Der dafür herangezogene Datensatz ist in der Datei „Kap5daten2.sav“ zu finden. Die 

Abbildung 5.9 zeigt die Ausgabe für eben jenen t-Test. 

Anstelle des Student’schen t-Tests hätte man hier ebenfalls eine lineare Regressionsanalyse mit 

dem dichotomen Prädiktor Studiengang (Gruppe mit 0 = Psychologie & 1 = BWL) und dem Kriterium 

IQ berechnen können: 

𝐼𝑄̂𝑖 = 𝛽̂0 + 𝛽̂1𝐺𝑟𝑢𝑝𝑝𝑒𝑖. 
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(a) Vervollständigen Sie basierend auf den Ergebnissen des Student’schen t-Tests in Abbildung 5.9 

die folgende Ergebnistabelle für das eben angeführte lineare Regressionsmodell: 

 Unstandardized b t Sig. 

(Constant)  53.67 <.001 

Gruppe    

(b) Überprüfen Sie Ihre Ergebnistabelle, indem Sie sich die lineare Regressionsanalyse ausgeben 

lassen und schreiben Sie einen Ergebnisbericht, bei dem Sie ein Signifikanzniveau von 5% 

verwenden. 

Hinweis: Für dieses (fiktive) Beispiel können Sie wiederum davon ausgehen, dass die für die lineare 

Regression notwendigen Annahmen allesamt erfüllt sind. 

Beispiel 11.9 

Der Datensatz „tulips.sav“ beinhaltet Informationen über die Größe von Tulpenblüten (Variable: 

blooms), je nach Feuchtigkeit der Erde (wenig (1) bis viel (3) Wasser, Variable: water) und Beschattung 

(niedrige (1) bis hohe (3) Beschattung, Variable: shade). Sie möchten herausfinden, ob die Feuchtigkeit 

und die Belichtung eigenständig, wie auch in Interaktion miteinander, die Größe der Tulpenblüten 

beeinflussen können. 

(a) Bevor Sie die Analyse durchführen, ist es in diesem Fall hilfreich die beiden Variablen water 

und shade zu zentrieren, da so der Wert 0 eine mittlere Feuchtigkeit bzw. mittlere Beschattung 

darstellt. 

(b) Erzeugen Sie dann die benötigte Interaktionsvariable aus den beiden zentrierten Prädiktoren. 

(c) Führen Sie im Anschluss eine multiple lineare Regressionsanalyse mit Interaktionsterm durch 

und schreiben Sie einen Ergebnisbericht. Verwenden Sie dafür ein Signifikanzniveau von 0.5%. 

Anmerkung: Leider ist nicht bekannt in welcher Einheit die Größe der Tulpenblüten in diesem Datensatz 

gemessen wurde, daher ist die Interpretation im Ergebnisbericht etwas erschwert. 
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Beispiel 11.10 

Erstellen Sie für das Regressionsmodell aus Beispiel 12.9 eine entsprechende Grafik. Auf der Grafik 

soll zu sehen sein wie sich der Zusammenhang zwischen Feuchtigkeit und Blütengröße je nach 

Beschattung (1 = niedrige Beschattung, 2 = mittlere Beschattung, 3 = hohe Beschattung) verändert. 

Verwenden Sie dafür ein Streudiagramm bei dem die Datenpunkte je nach Beschattung 

eingefärbt sein sollen. Weiters soll für die drei Untergruppen der Beschattung eine Regressionsgerade 

(Linear Fit Line) angezeigt werden. 

Hinweis: SPSS kann im Chart-Builder nur andere Farben für Datenpunkte setzen, wenn die 

entsprechende Variable in der SPSS-Datendatei als nominal-skaliert klassifiziert ist. Verwenden Sie 

daher eine nominale skalierte Variable für das Ausmaß der Beschattung. 
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Lösungen zu den Übungsaufgaben 

Lösungen der Übungsaufgaben zu Kapitel 1 

Beispiel 1.1 

Richtig: (a), (b), (c). Falsch: (d). 

Beispiel 1.2 

 

Abbildung L.1. Lösung zu Beispiel 1.2. 

Beispiel 1.3 

Begriffe Synonyme 

Merkmalsträger:in Untersuchungseinheit, Untersuchungsobjekt 

Merkmalsausprägung Merkmalswert 

Variablenwert Messwert 

Beispiel 1.4 

Richtig: (a), (c). Falsch: (b), (d). 

Beispiel 1.5 

Skalenniveau Beispiele 

Nominalskalenniveau Erkrankung (Ja/Nein); Haarfarbe; Geschlecht 

Ordinalskalenniveau Wettkampfplatzierung; Schulabschluss 

Intervallskalenniveau Temperatur 

Verhältnisskalenniveau Größe, Gewicht 

Absolutskalenniveau Anzahl (an Fehltagen, Büchern etc.) 
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Beispiel 1.6 

Richtig: (b), (c). Falsch: (a), (d). 

Beispiel 1.7 

Diskret: Studienfach, Augenfarbe, Anzahl an Fehltagen. Kontinuierlich: Größe, Gewicht, Temperatur. 

Beispiel 1.8 

Richtig: (c), (d). Falsch: (a), (b). 

Beispiel 1.9 

Z.B.: Die Anzahl an konkreten Übungsbeispielen, die Schüler:innen im Mathematikunterricht 

bearbeiten, wirkt sich positiv auf die Mathematikabschlussnote aus. 

Beispiel 1.10 

Z.B.: Je mehr Bücher Personen zu Hause haben, desto geringer ist das Merkmal Extraversion dieser 

Personen ausgeprägt. 

Beispiel 1.11 

Mit Urliste wird die ungeordnete tabellarische Darstellung von Daten bezeichnet. Unter Daten werden 

hierbei die Ergebnisse von Beobachtungen, Fragebögen, psychologischen Tests oder physikalischen 

Messinstrumenten bezeichnet, mit deren Hilfe die Ausprägung von Merkmalen untersuchter 

Merkmalsträger abgebildet werden soll. 

Beispiel 1.12 

Richtig: (d). Falsch: (a), (b), (c). 

Beispiel 1.13 

(a) 𝐻kum(𝑥4 = 12) = ∑ 𝐻(𝑥𝑗) = 𝐻(𝑥1) + 𝐻(𝑥2) + 𝐻(𝑥3) + 𝐻(𝑥4) = 1 + 2 + 4 + 1 = 84
𝑗=1 . 

(b) ℎkum(𝑥4 = 12) =
1

𝑛
∑ 𝐻(𝑥𝑗) =

1

𝑛
[𝐻(𝑥1) + 𝐻(𝑥2) + 𝐻(𝑥3) + 𝐻(𝑥4)] =4

𝑗=1

1

50
(1 + 2 + 4 + 1) = 8 /50 = 0.16. 

(c) ℎkum(𝑥𝑗 < 10) =
1

𝑛
∑ 𝐻(𝑥𝑗)2

𝑗=1 =
1

𝑛
[𝐻(𝑥1) + 𝐻(𝑥2)] =

1

50
(1 + 2) =

3

50
= 0.06 = 0.06 ∙ 1 =

0.06 ∙
100

100
= (0.06 ∙ 100) ∙

1

100
= 6 ∙

1

100
= 6%. (Die Ausformulierung der letzten Teilschritte 

dient lediglich der Illustration der Bedeutung des Symbols „%“ für „pro zent“, d.h. 

wortwörtlich für „in Einheiten von  
1

100
“.) 
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Beispiel 1.14 

Anzahl Liegestütz Absolute Häufigkeit Relative 

Häufigkeit 

Absolute 

kumulierte 

Häufigkeit 

Relative 

kumulierte 

Häufigkeit 

5 1 0.02 1 0.02 

9 2 0.04 3 0.06 

11 4 0.08 7 0.14 

12 1 0.02 8 0.16 

… …  … … 

Beispiel 1.15 

Richtig: (a), (b), (c). Falsch: (d). 

  



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

350 

Lösungen der Übungsaufgaben zu Kapitel 2 

Die Lösungen für die Übungsaufgaben dieses Kapitels liegen hauptsächlich in Form elektronischer 

Dateien vor, die Sie allesamt im elektronischen Ergänzungsmaterial zu diesem Dokument finden, das 

Sie unter https://osf.io/9tcx3/ herunterladen können. 

Beispiel 2.1 

Schritt für Schritt in Kapitel 2 erklärt. Syntaxdatei: siehe „Erste_Syntaxdatei. sps“. 

Beispiel 2.2 

Richtig: (b), (d). Falsch: (a), (c). 

Beispiel 2.3 

Richtig: (a), (c). Falsch: (b), (d). 

Beispiel 2.4 

Alle falsch. 

Beispiel 2.5 

Antworten: 

(a) 10. 

(b) 5. 

(c) 11. 

(d) 26 Jahre. 179 cm. Ja. 

(e) In cm. In kg. 

Beispiel 2.6 

Siehe Datei „Kap2UE6.sav“. 

Beispiel 2.7 

Siehe Datei „Kap2UE7.sav“. 

Beispiel 2.8 

Siehe Datei „Kap2UE8.sav“. 

https://osf.io/9tcx3/
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Beispiel 2.9 

Siehe Datei „Kap2UE9.sav“. 

Beispiel 2.10 

Siehe Datei „Kap2UE10.sps“. 

Beispiel 2.11 

Siehe Datei „Kap2UE11.sav“. 

Beispiel 2.12 

Siehe Datei „Kap2UE12.sav“. 

Beispiel 2.13 

Am kleinen roten Plus-Symbol über dem SPSS-ICON ganz oben links in der Ecke. 
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Lösungen der Übungsaufgaben zu Kapitel 3 

Beispiel 3.1 

Die Variablen mathe_mathe2 und mathe_mathe3 sind jeweils umzukodieren. Um die Umpolung 

durchzuführen wählen wir Transform >> Recode into Different Variables… und klicken dort mit der 

rechten Maustaste in das linke Feld, um uns die Variablennamen anzeigen zu lassen. Daraufhin wählen 

wir beide Variablen aus und schieben sie in das mittlere Feld. Daraufhin markieren wir die erste der 

beiden Zuweisungen, d.h. „mathe_mathe2 --> ?“ im mittleren Feld und tragen bei „Name“ den Namen 

der umkodierten Variable ein, z.B. „mathe_mathe2_umk“. Unter Label tragen wir ein: „Umkodierung 

des Items ‚Ich hasse Statistik‘“. Dann klicken wir auf „Change“ und dann auf „Old and New Values…“. 

Im sich öffnenden Fenster tragen wir zuerst die Zahl 1 unter „Value“ bei „Old Value“ ein und 

die Zahl 5 unter „Value“ bei „New Value“. Der Grund für diese beide Zahlen ist, dass die Skala der 

ursprünglichen Variablen von 1 bis 5 geht. Würde die Skala von 0 bis 6 gehen, hätten wir die Zahlen 0 

und 6 eingetragen. Daraufhin klicken wir auf „Add“. Nun tragen wir die Zahl 2 unter „Value“ bei „Old 

Value“ ein und die Zahl 4 unter „Value“ bei „New Value“ und klicken wieder auf „Add“. Nun tragen 

wir die Zahl 3 unter „Value“ bei „Old Value“ ein und die Zahl 3 unter „Value“ bei „New Value“ und 

klicken wieder auf „Add“ (diesen Schritt könnten wir uns strenggenommen auch sparen). Nun tragen 

wir die Zahl 4 unter „Value“ bei „Old Value“ ein und die Zahl 2 unter „Value“ bei „New Value“ und 

klicken wieder auf „Add“. Schließlich tragen wir die Zahl 5 unter „Value“ bei „Old Value“ ein und die 

Zahl 1 unter „Value“ bei „New Value“ und klicken wieder auf „Add“. Dann klicken wir auf „Continue“. 

Nun klicken wir auf die zweite Zuweisung, d.h. auf „mathe_mathe3 --> ?“ im mittleren Feld 

und gehen ganz analog zur vorhergehenden Variable vor. Im Fenster „Old and New Values“ sehen wir, 

dass die passenden Zuweisungen bereits eingetragen sind, hier ist also in diesem Fall nichts mehr zu tun 

(Vorsicht aber falls zwei Items unterschiedliche Skalen haben; dann müssen hier die entsprechenden 

Anpassungen vorgenommen werden). 

Wenn wir mit den Einstellungen für die Umkodierung der zweiten Variable fertig sind, klicken 

wir auf „Paste“ für unsere Dokumentation. Es öffnet sich eine Syntaxdatei, in der wir die beiden Zeilen 

„* Kapitel 3, Beispiel 3.1.“ und „* Umkodierung der Items mathe_mathe2 und mathe_mathe3.“ 
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Ergänzen. Danach speichern wir die Syntaxdatei gleich einmal unter der Bezeichnung „Kap3UE1.sps“ 

ab. Schließlich führen wir die Kommandozeilen in der Syntaxdatei aus, indem wir sie markieren und 

auf das grüne „Abspielen“-Symbol klicken. 

Daraufhin sehen wir, dass zwei neue Variablen in unserem Datensatz hinzugekommen sind. In 

der Variablenansicht nehmen wir noch sämtliche Einstellungen für die neuen Variablen vor, die noch 

nicht passen. Dann überprüfen wir, ob die Umkodierung richtig vonstattenging, indem wir in der 

Datenansicht jeweils die Variablen mathe_mathe2 und mathe_mathe3 mit den Variablen 

mathe_mathe2_umk und mathe_mathe3_umk vergleichen. Sofern alles richtig aussieht, speichern wir 

die neue Datendatei unter der neuen Bezeichnung „Kap3daten_bearbeitet_UE1.sav“ ab. 

Beispiel 3.2 

Zur Bildung einer entsprechenden Summenskala gehen wir wie folgt vor. Unter Transform >> Compute 

Variable… tragen wir zuerst als Bezeichnung für unsere Summenskala „Affinität_Mathe_Statistik“ 

unter „Target Variable“ ein. Daraufhin klicken wir rechts im linken Feld mit allen Variablen und lassen 

uns wieder die Variablennamen anstelle der Labels anzeigen. Nun klicken doppelt mit der linken 

Maustaste auf die Variable mathe_mathe1 und ergänzen anschließend hinter der gerade eingefügten 

Variablen ein „+“ im Feld „Numeric Expression“. Daraufhin klicken wir doppelt auf die Variable 

mathe_mathe2_umk, fügen wiederum ein „+“ nach der hinzugefügten Variable ein und klicken 

schließlich noch doppelt auf die Variable mathe_mathe3_umk. Danach fügen wir mit „Paste“ wieder 

alles in unsere Syntaxdatei ein, ergänzen diese um eine entsprechende Kommentarzeile und speichern 

Sie unter der neuen Bezeichnung „Kap3UE2.sps“ ab. Dann führen wir die neuen Kommandozeilen aus 

und überprüfen anhand einiger Personen in der Datenansicht, ob die Bildung der Summenskala wie 

gewünscht funktioniert hat. Daraufhin speichern wir die Datendatei unter der neuen Bezeichnung 

„Kap3daten_bearbeitet_UE2.sav“ ab. 

Beispiel 3.3 

Bei der in Beispiel 3.2 berechneten Summenskala handelt es sich um eine metrische Variable, die 

diskrete Werte zwischen 3 und 15 annehmen kann. Für eine metrische Variable sind jedenfalls die 

Angabe der typischen Ausprägung, der Streuung, sowie Minimum und Maximum informativ. Letztere 
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dienen insbesondere dazu, zu überprüfen, ob sich alle Werte im erlaubten Bereich für diese Variable 

befinden. Ist dem nicht so, dann ist das ein Hinweis auf Fehler bei der Dateneingabe oder Fehler bei der 

Berechnung der Summenskala. Zudem lassen wir uns noch eine Häufigkeitstabelle sowie ein 

Histogramm und ein Boxplot für die Summenskala ausgeben. 

Für die Maßzahlen und die Häufigkeitstabelle wählen wir erst Analyze >> Descriptive Statistics 

>> Frequencies… und dort unsere Summenskala Affinität_Mathe_Statistik aus. Unter „Statistics…“ 

wählen wir den Mittelwert (Mean), den Median, die Standardabweichung (Std. deviation), das 

Minimum, das Maximum, die Schiefe (Skewness) sowie die Wölbung (Kurtosis) aus. Unter „Charts…“ 

wählen wir Histogramm aus und lassen uns auch eine Normalverteilungskurve für das Histogramm 

anzeigen. Nach Einfügen der entsprechenden Kommandozeilen in die Syntaxdatei lassen wir uns unter 

Graphs >> Chart Builder… ein Boxplot für unsere Summenskala ausgeben. Ausführen aller neuen 

Kommandozeilen generiert eine Ausgabe, die wir unter der Bezeichnung „Kap3UE3.spv“ abspeichern. 

Beispiel 3.4 

Wir sollen die Variable statistikschmerzen umkodieren. Dazu können wir prinzipiell ganz analog zu 

Beispiel 3.1 vorgehen, allerdings ist hier zu beachten, dass die ursprüngliche Variable auf einer Skala 

von 1 bis 10 zu beantworten war. Dies muss bei der Eingabe alter und neuer Werte unter Transform >> 

Recode into Different Variables >> Old and New Values entsprechend berücksichtigt werden. Für das 

Ergebnis, siehe die Dateien „Kap3UE4.sps“ sowie „Kap3daten_bearbeitet_UE4.sav“. 

Beispiel 3.5 

Nun sollen wir eine Mittelwertskala aus den drei Items statistikliebe, mathematikliebe, und dem aus 

statistikschmerzen umkodierten Item generieren. Hierzu kann wiederum analog zu Beispiel 3.2 

vorgegangen werden, allerdings ist nun unter „Numeric Expression“ im Menü Transform >> Compute 

Variable… die Mittelwertsfunktion aus der Funktionsgruppe Statistik mit den entsprechenden drei 

Argumenten zu wählen. Dazu kann entweder die Funktion aus den Feldern rechts ausgewählt und die 

drei Variablen eingefügt werden oder es kann gleich „mean(statistikliebe, mathematikliebe, 

statistikschmerzen_umk)“ im Feld „Numeric Expression“ eingegeben werden. Für das Ergebnis, siehe 

die Dateien „Kap3UE5.sps“ sowie „Kap3daten_bearbeitet_UE5.sav“. 
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Beispiel 3.6 

Dieses Beispiel kann völlig analog zu Beispiel 3.3 gelöst werden. Für das Ergebnis, siehe 

„Kap3UE6.spv“ sowie „Kap3UE6.sps“. Interessant ist bei diesem Beispiel, dass wir im Boxplot einen 

Ausreißer haben. Die Person mit dem Code 025 scheint so wirklich gar nichts für Statistik übrig zu 

haben. 

Beispiel 3.7 

51 Personen wurden zu ihrem Lieblingsfach unter den Hauptfächern beim Schulabschluss befragt. Mit 

knapp der Hälfte (49%; 25 von 51 Personen) gefällt das Hauptfach Englisch den befragten Personen am 

häufigsten. Mathematik belegt den zweiten Platz der beliebtesten Hauptfächer mit 29.4% (15 der 51 

Personen). Auf Platz landet Deutsch mit 21.6% (11 von 51 Personen). Jede befragte Person hat ein 

Lieblingsfach angegeben. Abbildung L.2 zeigt die Verteilung der Hauptfächer unter den befragten 

Personen. 

 

Abbildung L.2. Verteilung der Hauptfächer unter den 51 danach befragten Personen. 
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Beispiel 3.8 

Von insgesamt 17 Leuten aus der Stichprobe, die derzeit in einer Beziehung sind, geben 14 an, aktuell 

auch verliebt zu sein und 3 wissen es nicht. Von 25 Leuten, die aktuell Single sind, geben hingegen nur 

2 an, gerade verliebt zu, während 14 Personen nicht verliebt sind, 8 es nicht wissen und 1 Person meint, 

dass das die Durchführenden der Untersuchung gar nichts angehe. Es sieht also schon ein bisschen 

danach aus, als wären Leute in einer Beziehung eher verliebt als Leute, die Single sind. Um den 

Sachverhalt weiter aufzuklären, ist allerdings noch mehr Forschung nötig. Die gesamte Kreuztabelle ist 

in Tabelle L.1 gegeben. 

Beispiel 3.9 

Mittelwerte und Standardabweichungen für die drei Variablen sind in Tabelle L.2 zusammengefasst. 

Bei der Körpergröße und der Schuhgröße dürfte es das Problem geben, dass es sich mit hoher 

Wahrscheinlichkeit jeweils um bimodale Verteilungen handelt, da sich weibliche und männliche 

Befragte in diesen Variablen doch recht deutlich unterscheiden. Zumindest weisen die Histogramme 

und Häufigkeitstabellen darauf hin. Bei der Körpergröße dürfte es zwei Maxima bei etwa 165 und 175-

180 cm geben, bei der Schuhgröße bei 38-39 und 43. Für weitere Details, siehe „Kap3UE9.spv“ sowie 

„Kap3UE9.sps“. 

Tabelle L.1. Resultierende Kreuztabelle in Beispiel 3.8. 

  Verliebt? 

  Ja Nein Weiß nicht Privatsache Total 

Beziehung 

Status 

Single 2 14 8 1 25 

In Beziehung 14 0 3 0 17 

Kompliziert 1 0 2 1 4 

Privatsache 0 0 0 5 5 

 Total 17 14 13 7 51 
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Tabelle L.2. Mittelwerte und Standardabweichungen für die drei Variablen Alter, Körpergröße und 

Schuhgröße aus Beispiel 3.9. 

 M SD 

Alter (in Jahren) 21.63 3.49 

Körpergröße (in cm) 170.80 9.65 

Schuhgröße (EU Format) 39.85 2.59 

Beispiel 3.10 

Siehe „Kap3UE10.spv“ sowie „Kap3UE10.sps“. 

Beispiel 3.11 

Für das Zusammenfügen der einzelnen Datendateien handelt es sich um den Fall „Hinzufügen neuer 

Fälle mit denselben Variablen“ aus Kapitel 2. Dazu können wir also wie folgt vorgehen, wir öffnen 

zuerst die beiden Dateien „Deutschland.sav“ und „Österreich.sav“ und kontrollieren, ob alle Variablen 

gleich definiert wurden. Daraufhin wählen wir in der Datei „Deutschland.sav“ Data >> Merge Files >> 

Add Cases… und wählen dort die bereits geöffnete Datei „Österreich.sav“ aus und klicken auf 

„Continue“. Sofern alle Variablen exakt gleich definiert waren, sollten wir keine Variablen im Feld 

„Unpaired Variables“ sehen und wir können gleich auf „OK“ klicken. Daraufhin werden die Fälle direkt 

in der Datei „Deutschland.sav“ hinzugefügt und es gibt dort jetzt 836 Fälle. Wir speichern diese Datei 

nun neu ab unter der Bezeichnung „Deutschland_Österreich.sav“. Wir können die Datei 

„Österreich.sav“ jetzt schließen und öffnen die Datei „Schweiz.sav“. Wir kontrollieren wiederum, ob 

alle Variablen gleich definiert wurden und fügen daraufhin die beiden Dateien ganz analog zu vorhin 

zusammen. Wir speichern den resultierenden Gesamtdatensatz, nun mit 1194 Fällen, unter der 

Bezeichnung „dach.sav“ ab. 

Wie bereits an der der Datenansicht erkennbar, haben insgesamt 1194 Personen an der 

Befragung teilgenommen. Unter Analyze >> Descriptive Statistics >> Frequencies… können wir uns 

eine Häufigkeitstabelle für die drei Nationen ausgeben lassen. An dieser können wir ablesen, dass 423 

Personen aus Deutschland teilgenommen haben, was einem Anteil von 35.4% an der Gesamtstichprobe 

entspricht. Aus Österreich haben 358 Personen teilgenommen, was 30% der Gesamtstichprobe 
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entspricht. In der Schweiz haben schließlich die verbleibenden 413 Personen teilgenommen, was 34.6% 

der Gesamtstichprobe entspricht. 

Beispiel 3.12 

Von den 1194 Befragten gaben 592 (49.6%) an, dass ihr Geschlecht „männlich“ sei, 602 (50.4%) gaben 

an, dass ihr Geschlecht „weiblich“ sei. Die Frage wurde von allen Teilnehmenden beantwortet. 

Die Befragten waren zwischen 22 und 59 Jahre alt. Das Durchschnittsalter betrug M = 36.29 

mit einer Standardabweichung von SD = 4.78. Der Median betrug Mdn = 36 Jahre. Eine Person gab kein 

Alter an. 

Das Bildungsniveau entsprach bei 13 (1.1%) Befragten der Volks- oder Hauptschule, bei 287 

(24.0%) der Fachschule oder einer höheren Schule ohne Matura oder einer Lehre, bei 198 (16.6%) der 

höheren Schule mit Matura oder Meisterprüfung oder Kolleg/Mat., und bei 689 (57.7%) der Universität, 

Fachhochschule oder Akademie. Von den Befragten machten 7 (0.6%) keine Angabe zum 

Bildungsniveau. 

Bei der Variable m_dur handelt es sich um die Ehedauer in Monaten. Sieht man sich einige 

statistische Maßzahlen für diese Variable an, wird allerdings schnell klar, dass mit dieser etwas nicht 

stimmen kann. Mittelwert (M = 179.68 Monate) und Median (Mdn = 77.50 Monate) klaffen 

beispielweise sehr weit auseinander, was auf eine äußerst rechtsschiefe Verteilung hindeutet. Ebenso ist 

die Standardabweichung im Vergleich zum Mittelwert auffällig groß (SD = 292.37 Monate). An der 

Häufigkeitsverteilung und am Histogramm kann man schließlich erkennen, dass ein erheblicher Teil der 

Stichprobe (10.3% der Gesamtstichprobe; 11.1% der Stichprobe, bereinigt für fehlende und ungültige 

Werte) angeblich eine Ehedauer von 999 Monaten angegeben hat. Dies erscheint aus mehreren Gründen 

äußerst unplausibel. Erstens entspricht eine Ehedauer von 999 Monaten einer Ehedauer 83.25 Jahren. 

Das ist zwar prinzipiell nicht unmöglich, aber vermutlich nur äußerst selten der Fall. Zweitens war das 

maximale Alter der befragten Personen 59 Jahre, also geringer als eine Ehedauer von 999 Monaten. 

Daraus lässt sich durchaus schlussfolgern, dass es sich bei den angeblichen 999 Monaten um 

Fehleingaben handeln dürfte. 
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In der Variablenübersicht sehen wir, dass fehlende Werte bei unterschiedlichen Variablen mit 

der Zahl 99 definiert wurden (zusätzlich zum ganz gewöhnlichen Fehlen des entsprechenden Eintrags). 

Wenn wir nun eine weitere Variable erzeugen, die wir z.B. „ehedauer_neu“ nennen und die schlichtweg 

der alten Variable m_dur entspricht, nur dass für diese Variable nun die Zahl 999 (statt 99; eine Ehedauer 

von 99 Monaten ist ja durchaus plausibel) fehlende Werte anzeigt, kommen wir zu plausibleren Werten 

für die Ehedauer in Monaten. Es ergibt sich ein Mittelwert von M = 77.37 Monaten (etwa 6.5 Jahre) mit 

einer Standardabweichung von SD = 42.11 Monaten. Die Verteilung ist immer noch stark rechtsschief. 

Auch das ergibt durchaus Sinn. Nach unten hin ist die Ehedauer ja durch 0 begrenzt, nach oben gibt es 

viel mehr Spielraum und hin und wieder ist die Ehedauer auch sehr lang, siehe Abbildung L.3. 

 

Abbildung L.3. Ein weitaus plausibleres Histogramm für die Ehedauer. 

Beispiel 3.13 

Dieses Beispiel lässt sich mit einer entsprechenden Kreuztabelle lösen, siehe „Kap3UE13.sps“. 

Inspektion derselben zeigt, dass in Deutschland 212 Männer und 211 Frauen befragt wurden, während 

es in der Schweiz 177 Männer und 181 Frauen und in Österreich 203 Männer und 210 Frauen waren. 
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Beispiel 3.14 

Für justice_mean ergibt sich ein Mittelwert von M = 4.61 mit einer Standardabweichung von SD = 1.07. 

Für justice_sum ergibt sich ein Mittelwert von M = 9.21 mit einer Standardabweichung von SD = 2.17. 

Für Details, siehe die Dateien “Kap3UE14.spv” sowie “Kap3UE14.sps”. 

Beispiel 3.15 

Die Streudiagramme für die vier Variablenpaare sind in den Abbildungen L.4-7 gezeigt. 

 

Abbildung L.4. Streudiagramm für das Variablenpaar (𝑥1, 𝑦1) aus Übungsaufgabe 3.15. 

 

Abbildung L.5. Streudiagramm für das Variablenpaar (𝑥2, 𝑦2) aus Übungsaufgabe 3.15. 
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Abbildung L.6. Streudiagramm für das Variablenpaar (𝑥3, 𝑦3) aus Übungsaufgabe 3.15. 

 

Abbildung L.7. Streudiagramm für das Variablenpaar (𝑥4, 𝑦4) aus Übungsaufgabe 3.15. 

In allen vier Fällen ist der Pearson Korrelationskoeffizient zu r = .82 gegeben, obwohl völlig 

unterschiedliche Datensituationen vorliegen. Den Datenpunkten könnte im ersten Fall durchaus ein 

linearer Zusammenhang zugrunde liegen. Der Datensatz im zweiten Fall scheint hingegen exakt (oder 

immerhin sehr präzise) durch einen quadratischen Zusammenhang beschreibbar. Der Zusammenhang 

im dritten Datensatz ist vermutlich für den Großteil der Datenpunkte optimal linear und der Koeffizient 

ungleich 1 kommt nur durch den einzelnen Ausreißer zustande. Im vierten Fall liegt für den Großteil 

der Datenpunkte gar keine Varianz bezüglich der Variablen 𝑥 vor. In allen außer dem ersten Fall 

erscheint eine Charakterisierung der Datenpunkte durch einen linearen Zusammenhang irreführend. 
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Beispiel 3.16 

Die drei Streudiagramme sind in den Abbildungen L.8-10 gezeigt. Mit allen Datenpunkten ergeben sich 

folgende Korrelationskoeffizienten: r = .30, rS = .24, τb = .17; allesamt kleine Effekte gemäß Cohen 

(1988). Ohne die beiden Datenpunkte ganz rechts unten im Streudiagramm ergeben sich die folgenden 

Werte: r = .55, rS = .41, τb = .28; ein großer Effekt gemäß Cohen (1988) für Pearsons 

Korrelationskoeffizienten, ein mittlerer Effekt für Spearmans Rangkorrelationskoeffizienten, ein kleiner 

Effekt für Kendalls tau-b. 

 

Abbildung L.8. Streudiagramm für den Originaldatensatz aus Übungsaufgabe 3.16. 

 

Abbildung L.9. Streudiagramm für Übungsaufgabe 3.16 nach Entfernung zweier Datenpunkte (rechts 

unten). 
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Werden auch noch die beiden Datenpunkte links unten entfernt, ergeben sich die folgenden 

Werte: r = .36, rS = .31, τb = .20; mittlere Effekte gemäß Cohen (1988) für Pearsons 

Korrelationskoeffizienten und Spearmans Rangkorrelationskoeffizienten, immer noch ein kleiner Effekt 

für Kendalls tau-b. 

 

Abbildung L.10. Streudiagramm für Übungsaufgabe 3.16 nach Entfernung zweier weiterer Datenpunkte 

(links unten). 

Man sieht an diesem Beispiel, dass alle drei Korrelationskoeffizienten durch ungewöhnliche 

Datenpunkte (im Vergleich zu den anderen) beeinflussbar sind, allerdings in deutlich anderem Ausmaß. 

Beispiel 3.17 

(a) Zwischen den Logarithmen der beiden Variablen besteht kein signifikanter Zusammenhang, 

r(45) = -.04, p = .782. Das Ergebnis liefert keine Evidenz für die theoretische Vorhersage. 

(b) Unter Ausschluss der entsprechenden vier Sterne besteht ein signifikanter Zusammenhang 

zwischen den Logarithmen der beiden Variablen, r(41) = .65, p < .001. In Einklang mit der 

theoretischen Vorhersage deutet das Ergebnis auf einen positiven Zusammenhang zwischen den 

Logarithmen der Oberflächentemperatur und der Leuchtkraft hin, d.h. je höher die 

Oberflächentemperatur, desto höher die Leuchtkraft. 
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Lösungen der Übungsaufgaben zu Kapitel 4 

Beispiel 4.1 

Richtig: (a), (b). Falsch: (c), (d). 

Beispiel 4.2 

Alle Aussagen sind falsch, siehe insbesondere auch Gigerenzer (2004). 

Beispiel 4.3 

Nr. Aussage R/F 

1) Es kann sein, dass der p-Wert kleiner als 𝛼 ist, aber die Teststatistik 𝑇 nicht im 

Ablehnungsbereich der Nullhypothese liegt. 

F 

2) Für eine ungerichtete Hypothese ist der p-Wert die Wahrscheinlichkeit unter 

Annahme der Gültigkeit der Nullhypothese dafür, dass sich die Teststatistik in der 

beobachteten Realisation oder einer extremeren Realisation in Richtung der 

Alternativhypothese realisiert. 

R 

3) Ist der p-Wert klein, dann liegt der wahre Populationsmittelwert weit weg vom 

Testwert. 

F 

4) Ist der p-Wert klein, dann hat man einen Effekt mit großer Effektstärke detektiert. F 

Beispiel 4.4 

Nr. Aussage R/F 

1) Ein p-Wert größer als das gewählte Signifikanzniveau bedeutet, dass es keinen 

Unterschied zwischen dem Populationsmittelwert und dem Testwert gibt. 

F 

2) Ein p-Wert größer als das gewählte Signifikanzniveau bedeutet, dass die 

Nullhypothese stimmt. 

F 

3) Ein p-Wert größer als das gewählte Signifikanzniveau bedeutet, dass die 

Nullhypothese eher stimmt als die Alternativhypothese. 

F 

4) Ein p-Wert kleiner als das gewählte Signifikanzniveau bedeutet, dass die 

Alternativhypothese zutrifft. 

F 

Für weitere häufige Missverständnisse bezüglich des p-Werts, siehe z.B. Greenland et al. 

(2016). 

Beispiel 4.5 

Richtig: (b). Falsch: (a), (c), (d). 
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Beispiel 4.6 

Richtig: (b), (d). Falsch: (a), (c). 

Beispiel 4.7 

Im Mittel ist das Alter der Kursteilnehmer:innen um 5.47 Jahre geringer als der Vergleichswert von 27.1 

Jahren (n = 51, M = 21.63, 95%-KI [20.65, 22.61], SD = 3.49). Das mittlere Alter unterscheidet sich 

(mit 𝛼 = .005) signifikant vom Vergleichswert, t(50) = -11.21, p < .001, Cohens d = 1.57, 95%-KI 

[1.15, 1.98]. Gemäß Cohens Heuristik (1988) handelt es sich um einen großen Effekt. 

Die Voraussetzungen für einen Einstichproben t-Test sind erfüllt: (i) es handelt sich um eine 

intervallskalierte Variable, (ii) die Stichprobe ist hinreichend groß (n > 30), (iii) die Varianz des Alters 

von Studierenden in Österreich (sowie von Kursteilnehmer:innen) ist unbekannt und muss mittels der 

Stichprobe geschätzt werden. 

Beispiel 4.8 

Im Mittel beträgt die Reaktionszeitverzögerung bei den 42 Versuchspersonen M = 55.47 ms (SD = 

22.02) und überschreitet (mit 𝛼 = .05) den Wert von 50 ms nicht signifikant, t(41) = 1.61, p = 0.058 

(gerichtete Hypothese). Als Effektstärke ergibt sich Cohens d = 0.25, was gemäß Cohens Heuristik 

(1988) einem kleinen Effekt entspricht. 
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Beispiel 4.9 

(a) Siehe Abbildung L.11. 

(b) Siehe Abbildung L.12. 

 

Abbildung L.11. Lösung Beispiel 4.9(a). 
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Abbildung L.12. Lösung Beispiel 4.9(b). 

Beispiel 4.10 

Die mittlere Qualität der n = 10 Hopfenproben beträgt M = 61.70 (SD = 11.15) und liegt (mit 𝛼 = .005) 

signifikant über dem Testwert von 50, t(9) = 3.32, p = .004 (gerichtete Hypothese). Gemäß Cohens 

Heuristik (1988) handelt es sich mit Cohens d = 1.05 um einen großen Effekt. Das Signifikanzniveau 

wurde zu .005 gewählt, da hier ein Fall der Qualitätssicherung vorliegt und wir uns daher vor allem 

gegen den Fehler 1. Art absichern und die false detection rate (FDR) geringhalten möchten. 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

368 

Beispiel 4.11 

Die Stichprobe muss 217 Personen umfassen. 

 

Abbildung L.13. Verlangter Screenshot für Beispiel 4.11. 

Beispiel 4.14 

Die Voraussetzungen für den Einstichproben-t-Test sind: (i) die Populationsvarianz der untersuchten 

Variable ist nicht bekannt, sondern muss mittels der Stichprobe geschätzt werden; (ii) die untersuchte 

Variable ist mindestens intervallskaliert; (iii) die untersuchte Variable kann durch eine normalverteilte 
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Zufallsvariable approximiert werden oder es handelt sich um eine hinreichend große Stichprobe, dass 

die Stichprobenkennwerteverteilung des Mittelwerts hinreichend gut durch eine Normalverteilung 

angenähert werden kann. 

Ob Voraussetzung (i) gegeben ist, hängt vom Domänenwissen des:der Forschers:Forscherin ab, 

der:die die jeweilige Fragestellung untersucht. Geht es beispielsweise um den IQ der 

Allgemeinbevölkerung, dann ist die Varianz per Definition des IQs bekannt. Bei den meisten anderen 

psychologischen Konstrukten ist hingegen davon auszugehen, dass die Populationsvarianz kaum 

bekannt sein dürfte. Die Gültigkeit von Voraussetzung (ii) hängt vom Untersuchungsdesign, insbes. von 

der Operationalisierung des entsprechenden psychologischen Konstrukts ab: Kann das Konstrukt durch 

eine metrische Variable beschrieben werden? Die Gültigkeit von Voraussetzung (iii) lässt sich, sofern 

sie nicht aus fundierter Theorie abgeleitet werden kann (etwa aus der Tatsache, dass sich Abweichungen 

vom Populationsmittelwert durch Summation sehr vieler kleiner, aber im Einzelfall unbekannter 

Abweichungen ergeben, siehe z.B. McElreath, 2020, S. 72-74), nur begrenzt mit statistischen Verfahren 

legitimieren. Dazu wird in der Praxis (jedenfalls zum jetzigen Zeitpunkt, d.h., September, 2025) nach 

wie vor auf Tests wie den Kolmogorov-Smirnov- oder den Shapiro-Wilk-Test zurückgegriffen. Bei 

beiden Tests handelt es sich um Signifikanztests, die die Gleichheit einer Teststatistik mit einem für eine 

normalverteilte Zufallsvariable üblichen Wert testen. D.h., die Argumentation ist prinzipiell dieselbe, 

die wir für das Testen eines Populationsmittelwerts kennengelernt haben: ergibt sich eine Teststatistik, 

die so extrem ist (d.h., so groß oder so klein), dass sie sich bei Ziehung einer einfachen Zufallsstichprobe 

aus einer entsprechenden Referenzverteilung (hier: Normalverteilung) nur selten ergeben würde, dann 

ist dies ein Indikator dafür, dass eventuell die Annahme der Referenzverteilung (hier: Normalverteilung) 

keine brauchbare Annahme darstellt und sie in diesem Fall abgelehnt würde. Dieses weit verbreitete 

Vorgehen ist allerdings nicht unproblematisch. Gerade bei kleinen Stichproben ergibt sich häufig keine 

signifikante Abweichung der entsprechenden Teststatistik vom Vergleichswert, auch wenn eigentlich 

keine Normalverteilung gegeben ist. Dies hat den Grund, dass bei kleinen Stichproben die Teststärke 

der Verfahren nicht groß genug ist, dass sich verlässlich (d.h., in einer angemessenen Anzahl der Fälle) 

eine signifikante Abweichung ergibt. Bei großen Stichproben ergibt sich hingegen sehr schnell eine 

signifikante Abweichung, ist dort aber grundsätzlich uninteressant, da bei großen Stichproben ohnehin 
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die Stichprobenkennwerteverteilung des Mittelwerts aufgrund des zentralen Grenzwerttheorems 

hinreichend gut durch eine Normalverteilung approximiert werden kann. Andere Verfahren, wie die in 

Kapitel 3 beschriebene Inspektion von Schiefe und Wölbung haben prinzipiell dasselbe Problem: dort, 

wo wir die Gültigkeit der Voraussetzung am ehesten brauchen, können wir uns v.a. im Falle eines nicht-

signifikanten Ergebnisses nicht auf das Ergebnis der Voraussetzungsprüfung verlassen. Zudem besagt 

ein nicht-signifikantes Ergebnis bei jeder Stichprobengröße niemals die Gleichheit eines Parameterwerts 

mit einem bestimmten Referenzwert, sondern lediglich, dass diese Gleichheit nicht mit einer bestimmten 

Irrtumswahrscheinlichkeit (d.h., 𝛼) ausgeschlossen werden kann. Voraussetzung (iii) bezieht sich aber 

in der Tat auf die Gleichheit der Verteilung der untersuchten Variable mit einer Normalverteilung 

(jedenfalls der Form nach). Um sich daher gegen Fehler erster Art abzusichern, wird daher in der Praxis 

v.a. bei kleinen Stichproben schon bei leichten Indizien für die Ungültigkeit dieser Voraussetzung auf 

Verfahren zurückgegriffen, die diese Voraussetzung nicht haben. 

Welche Konsequenzen hat es, wenn die Voraussetzungen nicht erfüllt sind? Wenn 

Voraussetzung (i) nicht erfüllt ist, ist im Allgemeinen die Teststärke geringer, da anstelle des t-Tests ein 

z-Test gerechnet werden könnte (siehe z.B. Bühner & Ziegler, 2017) und der kritische z-Wert kleiner 

ist als der kritische t-Wert (für alle Stichprobenumfänge und Irrtumswahrscheinlichkeiten). Falls 

Voraussetzung (ii) nicht erfüllt ist, ist die gesamte Ableitung der Teststatistik T in Kapitel 4 nicht 

anwendbar, und es lässt sich nicht sagen, wie sich das auf Irrtumswahrscheinlichkeit und Teststärke 

auswirkt. Ist Voraussetzung (iii) nicht erfüllt, so folgt die Teststatistik T keiner t-Verteilung mit n-1 

Freiheitsgraden. D.h., man weiß i.A. nicht wie häufig man eine so extreme oder extremere Teststatistik 

wie in der Stichprobe unter Gültigkeit der Nullhypothese erhalten würde. Das bedeutet der wahre p-

Wert kann ein ganz anderer Wert sein als der Wert, den man unter Annahme der Gültigkeit der 

Voraussetzung erhält. D.h. auch, dass der Vergleich jenes unter einer falschen Annahme erhaltenen p-

Werts mit einer bestimmten vorab festgelegten Irrtumswahrscheinlichkeit nichts bringt, da ja der wahre 

p-Wert ein völlig anderer Wert sein kann. Das ganze Argument des Nullhypothesensignifikanztestens 

bricht in sich zusammen. Man kann strenggenommen keine der Aussagen mehr machen, die man 

überhaupt mit dem Verfahren machen kann. In der Praxis ist es allerdings so, dass sich ab einer 

hinreichend großen Stichprobengröße die Kennwerteverteilung des Mittelwerts hinreichend gut durch 
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eine Normalverteilung approximieren lässt, und daher die Teststatistik T in guter Näherung der 

entsprechenden t-Verteilung folgt. Für Variablen, die sich gut durch symmetrische Verteilungen mit 

schmalen Rändern beschreiben lassen, ist das in guter Näherung ab einigen wenigen 10 (z.B. 30) 

Messwerten der Fall. Für Variablen, die hingegen nur durch sehr schiefe Verteilungen mit breiten 

Rändern gut beschrieben werden können, können hingegen einige hundert Messwerte nötig sein, um 

von einer hinreichend guten Näherung der Teststatistik T durch eine Normalverteilung ausgehen zu 

können. Wichtig bleibt dabei immer, dass die Messwerte alle durch dieselbe Verteilung und unabhängig 

voneinander beschreibbar sein sollten (auch wenn sich beide dieser Voraussetzungen für allgemeinere 

Formulierungen des zentralen Grenzwerttheorems etwas relaxieren lassen). 

Ein alternatives Verfahren, das neben dem in Kapitel 4 bereits angesprochenen Bootstrap-

Verfahren zumindest Erwähnung finden sollte, wenn es lediglich darum geht zu untersuchen, ob ein 

Populationsmittelwert größer oder kleiner als ein bestimmter Referenzwert ist, ist der sog. 

Vorzeichentest. Besteht zwischen dem Populationsmittelwert und dem Referenzwert in der Tat kein 

Unterschied, so sollten sich bei zufälliger Ziehung einzelner Personen aus der Population für deren 

Messwerte im Mittel gleich viele unter dem Referenzwert wie über dem Referenzwert befinden. Weicht 

das Verhältnis stark in eine Richtung ab, so spricht das gegen die Gleichheit mit dem Referenzwert. 

Eine detaillierte Beschreibung des Verfahrens findet sich bei Wilcox (2017, S. 364-365). 
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Lösungen der Übungsaufgaben zu Kapitel 5 

Beispiel 5.1 

Richtig: (a), (d). Falsch: (b), (c). 

Beispiel 5.2 

Richtig: (a), (c). Falsch: (b), (d). 

Beispiel 5.3 

Richtig: (d). Falsch: (a), (b), (c). 

Beispiel 5.4 

Die Fragestellung wird mit einem t-Test für abhängige Stichproben untersucht, da alle Voraussetzungen 

für diesen erfüllt sind (n > 30; gemessene Variablen sind intervallskaliert; Varianz der Differenzvariable 

nicht bekannt). 

Mittelwert und Standardabweichung für die BDI-Werte der n = 67 Patient:innen betragen zu 

Zeitpunkt 1 M1 = 14.36 und SD1 = 9.71, und zu Zeitpunkt 2 M2 = 5.78 und SD2 = 3.70. Mit einer mittleren 

Differenz von 8.58 Punkten zwischen den beiden Messzeitpunkten haben die BDI-Werte der 

Patient:innen signifikant abgenommen, t(66) = 7.64, p < .001 (gerichtete Hypothese), Cohens d = 0.93. 

Der Unterschied entspricht gemäß Cohens Heuristik (1988) einem großen Effekt. 

Beispiel 5.5 

Bei dem passenden Test für diese Fragestellung handelt es sich um einen t-Test für abhängige 

Stichproben, da jedes der beiden Items von jedem Studierenden beantwortet wurde und somit zwischen 

den Antworten eine Abhängigkeit besteht (2 Messwerte für jede Person). Dies zeigt sich auch in der 

erheblichen Korrelation zwischen den beiden Items von r = 0.64. 

Mittelwert und Standardabweichung der N = 50 Studierenden für die Zustimmung zur Aussage 

“Ich hasse Statistik” (auf einer Skala von 1 bis 5) betragen M1 = 2.22 und SD1 = 1.03. Der Aussage “Ich 

habe Angst vor der nächsten Statistikprüfung” stimmen die Studierenden hingegen im Mittel mehr zu, 

mit M2 = 2.94 mit Standardabweichung SD2 = 1.17 zu. 
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Mit einer mittleren Differenz von 0.73 unterscheiden sich die beiden Mittelwerte (mit 𝛼 = .005) 

signifikant, t(50) = 5.51, p < .001 (ungerichtete Hypothese), Cohens d = 0.77. Gemäß Cohens Heuristik 

(1988) handelt es sich um einen mittleren Effekt. 

Beispiel 5.6 

Da in diesem Fall mit nur 14 männlichen Teilnehmern keine hinreichend große Stichprobe vorliegt, 

wurde die Normalverteilungsvoraussetzung geprüft. Weder der Kolmogorov-Smirnov- noch der 

Shapiro-Wilk-Test waren signifikant, noch wichen Schiefe und Wölbung mehr als zwei Standardfehler 

von den Werten für eine Normalverteilung ab. Zudem ergab auch die Inspektion des Q-Q-Plots keine 

Auffälligkeiten. Daher wird von einer Verträglichkeit mit der Normalverteilungsvoraussetzung 

ausgegangen. 

Mittelwert und Standardabweichung für die Körpergröße der n = 37 weiblichen Studierenden 

betragen M = 166.84 cm und SD = 7.57 cm. Mittelwert und Standardabweichung für die Körpergröße 

der n = 14 männlichen Studierenden betragen hingegen M = 181.29 cm und SD = 5.99 cm. 

Mit einer Differenz von 14.45 cm zwischen den beiden Mittelwerten sind die männlichen 

Studierenden der gerichteten Hypothese entsprechend im Mittel (mit 𝛼 = 0.005) signifikant größer als 

die weiblichen Studierenden, t(29.56) = 7.12, p < .001, Cohens d = 2.01. Gemäß Cohens Heuristik 

(1988) handelt es sich um einen großen Effekt. 

Beispiel 5.7 

Als Variable zur Operationalisierung der Größe der Füße wird die Schuhgröße gewählt. D.h. das 

Merkmal, das uns eigentlich interessiert, ist die Größe der Füße. Die Variable, mit der wir dieses 

Merkmal quantifizieren (d.h. in Zahlen fassen), ist die Schuhgröße, da bekanntlich größere Füße mit 

einer größeren Schuhgröße einhergehen. 

Mittelwert und Standardabweichung für die Schuhgröße der n = 37 weiblichen Studierenden 

betragen M = 38.53 und SD = 1.33. Mittelwert und Standardabweichung für die Schuhgröße der n = 14 

männlichen Studierenden betragen hingegen M = 43.36 und SD = 1.65. 
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Mit einer Differenz von 4.83 zwischen den beiden Mittelwerten haben die männlichen 

Studierenden der gerichteten Hypothese entsprechend im Mittel (mit 𝛼 = 0.005) signifikant größere 

Füße als die weiblichen Studierenden, t(19.81) = 9.83, p < .001, Cohens d = 3.40. Gemäß Cohens 

Heuristik (1988) handelt es sich um einen großen Effekt. 

Beispiel 5.8 

Die Variable Schuhgröße ist intervallskaliert und die Varianzen der Schuhgröße in den beiden 

Populationen sind nicht bekannt. Diese beiden Voraussetzungen sind also erfüllt. Levenes Test ist nicht 

signifikant, d.h. es könnte auch die Durchführung eines Studentschen t-Tests gerechtfertigt werden. 

Allerdings scheint die Normalverteilungsvoraussetzung für die Schuhgrößen der männlichen 

Studierenden verletzt zu sein. Sowohl Schiefe (= 1.74, SE = 0.60) als auch Wölbung (= 4.67, SE = 1.15) 

weichen mehr als zwei Standardabweichungen von den Werten für eine Normalverteilung ab. Auch der 

Kolmogorov-Smirnov-Test (p = .001) sowie der Shapiro-Wilk-Test (p = .007) sind (mit 𝛼 = .05) 

signifikant. Für die Q-Q-Plots sind schlichtweg zu wenige Datenpunkte vorhanden für ein 

aussagekräftiges Ergebnis. 

In diesem Fall würde es sich also anbieten, die Ergebnisse auch mit einem robusteren Verfahren 

(gegen Verletzung der Normalverteilungsvoraussetzung) zu überprüfen. Dafür kann beispielsweise ein 

Mann-Whitney Test durchgeführt werden. Um einen solchen Test mit SPSS durchzuführen ist unter 

Analyze >> Nonparametric Tests >> Legacy Dialogs >> Two-Independent-Samples Tests die 

Schuhgröße im Feld „Test Variable List“ einzufügen und das Geschlecht wiederum als „Grouping 

Variable“, woraufhin noch die beiden Gruppen unter „Define Groups…“ zu definieren sind. Danach 

können die entsprechenden Kommandozeilen mittels „Paste“ wieder in die Syntax eingefügt und dort 

ausgeführt werden. In der Ausgabe kann in der Tabelle „Test Statistics“ unter „Asymp. Sig. (2-tailed)“ 

eingesehen werden, dass auch in diesem Fall ein signifikanter Unterschied für die Schuhgrößen 

weiblicher und männlicher Studierender erhalten wird. Eine weitere Möglichkeit wäre die Anforderung 

eines Bootstrap Tests mit mindestens 1000 Bootstrap-Stichproben unter Analyze >> Compare Means 

and Proportions >> Independent-Samples T Test… durch Auswählen von „Perform bootstrapping“ im 

Menü „Bootstrap…“. 
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Beispiel 5.9 

Unter Annahme gleich vieler Testpersonen in Experimental- und Plazebogruppe muss die 

Gesamtstichprobe 1172 Personen umfassen, siehe Abbildung L.14. 

 

Abbildung L.14. Lösung für Beispiel 5.9. 
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Beispiel 5.10 

Es werden mindestens 17 Personen benötigt, siehe Abbildung L.15. 

 

Abbildung L.15. Lösung für Beispiel 5.10. 
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Beispiel 5.11 

Das mittlere Angstniveau unterscheidet sich (mit 𝛼 = .05) nicht signifikant zwischen Gruppe 1 (M = 

5.22, SD = 1.06, n = 60) und Gruppe 2 (M = 5.66, SD = 0.98, n = 30), t(62.28) = 1.94, p = 0.057, Cohens 

d = 0.42. Gemäß Cohens Heuristik (1988) handelt es sich um einen kleinen Effekt. 

Beispiel 5.12 

Das mittlere Depressionsniveau unterscheidet sich (mit 𝛼 = .005) nicht signifikant zwischen Gruppe 1 

(M = 4.91, SD = 1.05, n = 70) und Gruppe 2 (M = 5.25, SD = 0.78, n = 30), t(72.97) = -1.81, p = .074, 

Cohens d = 0.35. Gemäß Cohens Heuristik (1988) handelt es sich um einen kleinen Effekt. 

Beispiel 5.13 

Die Konzentrationsfähigkeit nach der Intervention (M = 56.30, SD = 29.33) ist (mit 𝛼 = .04) signifikant 

höher als die Konzentrationsfähigkeit vor der Intervention (M = 49.88, SD = 14.86), t(72) = -1.94, p = 

.028, Cohens d = 0.23. Gemäß Cohens Heuristik (1988) handelt es sich um einen kleinen Effekt. 

Beispiel 5.14 

Zur Beantwortung der Fragestellung wurde ein t-Test für abhängige Stichproben durchgeführt. Dieser 

ergibt, dass sich die Fähigkeit zur mentalen Rotation zu Zeitpunkt 1 (M = 51.00, SD = 9.80) statistisch 

signifikant von der Fähigkeit zur mentalen Rotation zu Zeitpunkt 2 (M = 57.30, SD = 12.91) 

unterscheidet, t(92) = 6.84, p < .001, Cohens d = 0.70. Gemäß Cohens Heuristik (1988) handelt es sich 

um einen mittleren Effekt. 

Beispiel 5.15 

Der Mittelwert der Gruppe „Schrift“ (M = 49.60, SD = 9.52) fällt niedriger aus als der Mittelwert der 

Gruppe „Sprache“ (M = 65.01, SD = 9.27). Zur Überprüfung der statistischen Signifikanz des 

Unterschieds der Mittelwerte wurde ein t-Test für unabhängige Stichproben durchgeführt. Mit einem 

Unterschied von 15.41 Punkten im Testergebnis unterscheiden sich die Gruppen „Schrift“ und 

„Sprache“ statistisch signifikant voneinander, t(169.88) = 10.75, p < .001, Cohens d = 1.63. Gemäß 

Cohens Heuristik (1988) handelt es sich um einen großen Effekt. 
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Beispiel 5.16 

(a) Die 119 Personen mit Burnout (M = 61.48, SD = 12.82) erleben im Mittel mehr Stress am 

Arbeitsplatz als die 348 Personen ohne Burnout (M = 53.36, SD = 12.16). Der Unterschied der 

beiden Mittelwerte von 8.13 ist (mit 𝛼 = .005) signifikant, t(465) = -6.21, p < .001, Cohens d = 

0.66. Gemäß Cohens Heuristik (1988) handelt es sich um einen mittleren Effekt. 

(b) Die Angestellten der Firma erleben weniger Stress am Arbeitsplatz (M = 55.43, SD = 12.82) als 

in ihrem Privatleben (M = 61.91, SD = 14.74). Der Unterschied von 6.48 ist (mit 𝛼 = .005) 

statistisch signifikant, t(466) = 6.59, p < .001, Cohens d = 0.31. Gemäß Cohens Heuristik (1988) 

handelt es sich um einen kleinen Effekt. 

Beispiel 5.17 

Es wurde ein t-Test für abhängige Stichproben durchgeführt. Die Schmerzintensität nach Einnahme des 

Medikaments (M = 4.73, SD = 1.80) ist im Mittel für die n = 200 Personen (mit 𝛼 = .005) signifikant 

geringer als die Schmerzintensität vor der Einnahme (M = 4.94, SD = 1.41), t(199) = 2.84, p = .003 

(gerichtet), Cohens d = 0.20. Gemäß Cohen (1988) handelt es sich um einen kleinen Effekt. Die 

Einnahme des Medikaments scheint die Schmerzen zwar im Mittel tatsächlich ein wenig zu lindern, der 

Effekt ist allerdings nicht sehr stark. 

Beispiel 5.18 

Um die Fragestellung zu untersuchen wurde ein t-Test für unabhängige Stichproben durchgeführt. Die 

Bewertung des Dreigängemenüs fiel im Mittel (mit 𝛼 = .005) signifikant höher in der Personengruppe 

aus, die Zitronensaft zu trinken bekam (M = 5.85, SD = 2.12, n = 75), als in der Gruppe, die Wasser zu 

trinken bekam (M = 4.81, SD = 2.13, n = 75), t(148) = 2.98, p = .002 (gerichtet), Cohens d = 0.49. 

Gemäß Cohen (1988) handelt es sich um einen kleinen Effekt. 

Beispiel 5.19 

Die Lernmotivation der n = 59 Schüler:innen vor der Aktivierungsübung (M = 1.95, SD = 0.35) ist im 

Mittel niedriger als die Lernmotivation nach der Aktivierungsübung (M = 2.15, SD = 0.36). Ein t-Test 

für abhängige Stichproben ergibt, dass die Lernmotivation nach der Übung (mit 𝛼 = .005) signifikant 

höher ist als vor der Übung, t(58) = 2.82, p = .003 (gerichtet), Cohens d = 0.37. Gemäß Cohen (1988) 
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handelt es sich um einen kleinen Effekt. Die kurze Aktivierungsübung scheint sich also durchaus leicht 

positiv auf die Lernmotivation auszuwirken. 

Beispiel 5.20 

Das allgemeine Entspannungsniveau der n = 60 Klient:innen vor der Atemübung (M = 1.95, SD = 0.35) 

ist im Mittel niedriger als das Entspannungsniveau nach der Atemübung (M = 2.24, SD = 0.41). Ein t-

Test für abhängige Stichproben ergibt, dass das Entspannungsniveau nach der Übung (mit 𝛼 = .005) 

signifikant höher ist als vor der Übung, t(59) = 3.67, p < .001 (gerichtet), Cohens d = 0.47. Gemäß 

Cohen (1988) handelt es sich um einen kleinen Effekt. Die kurze Atemübung scheint sich also durchaus 

leicht positiv auf das Entspannungsniveau auszuwirken. 

Beispiel 5.21 

Die Gesamtstichprobe muss 242 Personen umfassen. 

 

Abbildung L.16. Verlangter Screenshot für Beispiel 5.21. 
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Beispiel 5.22 

Die Gesamtstichprobe muss 338 Personen umfassen. 

 

Abbildung L.17. Verlangter Screenshot für Beispiel 5.22. 
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Beispiel 5.23 

Die Stichprobe muss 337 Personen umfassen. 

 

Abbildung L.18. Verlangter Screenshot für Beispiel 5.23. 
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Lösungen der Übungsaufgaben zu Kapitel 6 

Beispiel 6.1 

Richtig: (b), (c). Falsch: (a), (d). 

Beispiel 6.2 

Richtig: (b), (d). Falsch: (a), (c). 

Beispiel 6.3 

Richtig: (a), (d). Falsch: (b), (c). 

Beispiel 6.4 

Nr. Aussage R/F 

1) Gemäß Cohens Heuristik (1988) wird ein 𝜂2 = 0.4 als kleiner Effekt bezeichnet F 

2) Eine Effektstärke für die einfaktorielle ANOVA heißt f und kann aus 𝜂2 berechnet 

werden kann. Diese Berechnung kann auch in G*Power durchgeführt werden. 

R 

3) Fishers least-significant-difference (LSD) Test hat für den Fall einer einfaktoriellen 

Varianzanalyse ohne Messwiederholung für drei Gruppen eine höhere Teststärke 

als Tukeys honestly-significant-difference (HSD) Test und ist diesem daher 

vorzuziehen. 

R 

4) Falls die Voraussetzung der Varianzhomogenität nicht erfüllt ist, kann anstelle einer 

einfaktoriellen Varianzanalyse ohne Messwiederholung eine Varianzanalyse nach 

Welch gerechnet werden. 

R 

5) Die Voraussetzung der Normalverteilung der AV ist wichtiger als die 

Voraussetzung der Varianzgleichheit für einfaktorielle Varianzanalysen ohne 

Messwiederholung. 

F 

6) Bei 𝜂2 zwischen 0.5 und 0.8 spricht man gemäß Cohens Heuristik (1988) von einem 

mittleren Effekt. 

F 
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Beispiel 6.5 

Die 14 männlichen Übungsteilnehmer (M = 181.29 cm, SD = 5.99 cm) sind im Mittel größer als 

weibliche Übungsteilnehmerinnen (M = 166.84 cm, SD = 7.57 cm). Levenes Test zur Prüfung der 

Voraussetzung der Varianzhomogenität war nicht signifikant (p = .268). Der Größenunterschied ist 

statistisch signifikant, F(1,49) = 41.03, p < .001, und entspricht mit 𝜂2 = .46 gemäß Cohens Heuristik 

(1988) einem großen Effekt. 

Beispiel 6.6 

Der Mittelwert der Gruppe „Schrift“ (M = 49.60, SD = 9.52, n = 86) fällt niedriger aus als der Mittelwert 

der Gruppe „Sprache“ (M = 65.01, SD = 9.27, n = 86). Zur Überprüfung der statistischen Signifikanz 

des Unterschieds der Mittelwerte wurde eine Varianzanalyse ohne Messwiederholung durchgeführt. 

Levenes Test zur Überprüfung der Varianzhomogenität war nicht signifikant (p = 0.870). Die beiden 

Gruppen „Schrift“ und „Sprache“ unterscheiden sich statistisch signifikant voneinander, F(1,170) = 

115.62, p < .001, 𝜂2 = .41. Der Effekt entspricht gemäß Cohens Heuristik (1988) einem großen Effekt. 

Beispiel 6.7 

Für insgesamt 1557 Personen, d.h. 519 pro Gruppe, siehe Abbildung L.19. 

Beispiel 6.8 

Für die Abneigungen gegenüber Statistikprüfungen (Skala 0-10) ergeben sich für die drei verglichenen 

Lieblingshauptfächer Deutsch, Englisch und Mathematik folgende Mittelwerte, Standardabweichungen 

sowie Stichprobengrößen: 

Hauptfach M SD n 

Deutsch 3.91 1.51 11 

Englisch 5.04 1.93 25 

Mathematik 3.27 1.58 15 

Levenes Test für die Gleichheit der Varianzen war nicht signifikant (p = .945). Die Unterschiede 

zwischen den Mittelwerten der drei entsprechenden Gruppen von Studierenden sind statistisch 

signifikant, F(2,48) = 5.13, p = .010. Damit ist die Abneigung gegenüber Statistikprüfungen in diesem 
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Sinne abhängig vom Lieblingsfach in der Schule. Mit 𝜂2 = .18 zeigt sich gemäß Cohens Heuristik (1988) 

ein großer Effekt des Lieblingsfachs auf die Abneigung. 

Paarweise Vergleiche mittels Fishers LSD Test ergeben einen signifikanten Unterschied zwischen den 

Mittelwerten für Studierende mit dem Lieblingsfach Englisch und den Mittelwerten für Studierende mit 

dem Lieblingsfach Mathematik, p = .003. Die verbleibenden beiden paarweisen Unterschiede sind nicht 

statistisch signifikant (p = .080 für den Vergleich zwischen Deutsch und Englisch, p = .359 für den 

Vergleich zwischen Deutsch und Mathematik). 

 

 

Abbildung L.19. Lösung für Beispiel 6.7. 
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Beispiel 6.9 

Deskriptive Statistiken sind in der Tabelle in der Lösung zu Beispiel 6.8 zu finden. 

Entsprechend unserer Vermutungen ergab sich mit einem Unterschied von 1.21 (95%-KI [0.17, 

2.24]) im Mittel eine signifikant höhere Abneigung gegen Statistikprüfungen bei sprachaffinen 

Studierenden als bei Mathematik-affinen, t(28.32) = 2.39, p = 0.012, Cohens d = 0.69. Zudem ergab 

sich mit Unterschied von 1.13 (95%-KI [0.10, 2.36]) ebenfalls eine signifikant höhere Abneigung bei 

Englisch-affinen als bei Deutsch-affinen Studierenden, t(24.20) = 1.89, p = 0.035, d = 0.65. Bei beiden 

Effekten handelt es sich gemäß Cohens Heuristik (1988) um mittlere Effekte. 

Beispiel 6.10 

Die Gruppengrößen (n) sowie mittlere Anzahl an verkauften Alben (M) und deren 

Standardabweichungen (SD) für die drei Kategorien unterschiedlicher attraktiver Bands sind in der 

folgenden Tabelle zusammengefasst: 

Ergebnistabelle 

Deskriptive Statistiken 

Attraktivität M SD n 

„ugly“ 161.14 75.67 70 

„average“ 215.75 76.99 73 

„beautiful“ 203.68 80.04 57 

Levenes Test zur Überprüfung der Varianzhomogenität war nicht signifikant (p = .871). Die 

Unterschiede zwischen den Mittelwerten für die drei Kategorien sind statistisch signifikant, F(2,197) = 

9.62, p < .001. Mit 𝜂2 = .09 zeigt sich gemäß Cohens Heuristik (1988) ein mittlerer Effekt der 

Attraktivität auf die mittleren Verkaufszahlen. 

Paarweise Vergleiche gemäß Fishers LSD-Test ergeben einen signifikanten Unterschied 

zwischen den Mittelwerten für hässliche Bands und für durchschnittlich attraktive (p < .001) oder schöne 

Bands (p = .002). Die mittleren Verkaufszahlen von durchschnittlichen attraktiven und schönen Bands 

unterscheiden sich nicht signifikant (p = .379). 
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Beispiel 6.11 

Die Ergebnisse der drei Methoden sind in Abbildung L.20 gegenübergestellt. 

 

Abbildung L.20. Ergebnisse für die drei verwendeten post-hoc Verfahren in Beispiel 6.11. 

Man sieht: Fishers LSD-Test ergibt die kleinsten p-Werte und hat daher, da er die FWER im 

Fall von drei Gruppen exakt kontrolliert die höchste Teststärke von den drei Verfahren ohne Fehler 1. 

Art zu erhöhen. Dies gilt allerdings nur, wenn es sich genau um den Vergleich von drei Gruppen handelt. 

Man sieht auch, dass p-Werte bzw. Konfidenzintervalle bei Tukeys HSD-Test kleiner sind als 

bei Bonferroni, d.h. höhere Teststärke, da weniger konservativ (Bonferroni kontrolliert FWER zu stark). 
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Beispiel 6.12 

Korrektur Ergebnisbericht: Die Stichprobe umfasste insgesamt 200 Personen. Der erste Kontrast 

verglich die beiden Therapien mit den beiden Kontrollbedingungen. Es zeigte sich, dass die beiden 

Therapien zu weniger mehr Gewichtszunahme führten als die beiden Kontrollbedingungen (t(928.74 

192.09) = 7.13, p < .001, d = 1.01; d.h. gemäß Cohen (1988) ein großer Effekt). Zwischen den beiden 

Therapieformen gab es keinen einen signifikanten Unterschied zwischen den mittleren 

Gewichtszunahmen für die KVT-Gruppe (M = 5.90, SD = 2.66 3.05) und die LKT-Gruppe (M = 4.52, 

SD = 3.05 2.66; t(96.19) = 2.40, p = .018, d = 0.47; d.h. gemäß Cohen (1988) ein großer mittlerer Effekt). 

Auch innerhalb der Kontrollbedingungen fand sich ein signifikanter Unterschied zwischen den mittleren 

Gewichtszunahmen der TAU-Gruppe (M = 3.20, SD = 2.73) und der KB-Gruppe (M = 1.37, SD = 3.15; 

t(96.06) = 3.12, p = .020 .002, d = 0.63; d.h., ein mittlerer Effekt gemäß Cohen(1988)). 

Beispiel 6.13 

Um die Hypothese zu prüfen, wurden entsprechende a-priori Kontraste definiert, um (a) die 

Wirksamkeit der beiden Therapien mit der Kontrollbedingung zu vergleichen und (b) die Wirksamkeit 

der beiden Therapien miteinander zu vergleichen. 

Bezüglich Hypothese (a) ergab ein t-Test nach Welch, dass beide Therapien (mit 𝛼 = .005) 

signifikant besser wirken als die Kontrollbedingung, t(82.16) = 4.86, p < .001 (gerichtet), Cohens d = 

0.92. Gemäß Cohen (1988) entspricht das einem großen Effekt. 

Bezüglich Hypothese (b) ergab ein t-Test nach Welch, dass die Verhaltenstherapie (mit 𝛼 = 

.005) nicht signifikant besser wirkt als die Psychoanalyse, t(77.23) = 0.87, p = .194 (gerichtet), Cohens 

d = 0.20. Die Effektstärke beträgt präziser d = 0.198, was gemäß Cohen (1988) knapp keinem kleinen 

Effekt entspricht. 

Deskriptive Statistiken für die Besserung der Symptomatik sind für alle drei 

Therapiebedingungen in Tabelle L.3 angegeben. 
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Tabelle L.3 

Mittelwerte und Standardabweichungen für die Besserung der Symptomatik für die drei Bedingungen 

(Beispiel 6.13) 

Bedingung M SD n 

Treatment as usual -1.80 13.34 40 

Psychoanalyse 9.65 14.85 40 

Verhaltenstherapie 12.40 13.43 40 

Beispiel 6.14 

Um die Hypothese zu prüfen, wurde ein entsprechender a-priori Kontrast definiert, um den Unterschied 

zwischen dem Mittelwert der Statistikangst von Absolvent:innen von Schulen mit Schwerpunkt 

Naturwissenschaft und Technik mit dem Mittelwert der Statistikangst von Absolvent:innen beider 

anderen Schultypen zusammen zu vergleichen. Ein t-Test nach Welch ergab, dass die Statistikangst von 

Absolvent:innen von Schulen mit Schwerpunkt Naturwissenschaft und Technik (M = 5.82, SD = 1.58, 

n = 75) entsprechend der Hypothese im Mittel (mit 𝛼 = .005) signifikant niedriger ist als diejenige von 

Absolvent:innen der beiden anderen Schultypen (für Schwerpunkt Sprache: M = 6.44, SD = 1.54, n = 

100; für Schwerpunkt Kunst und Design: M = 6.39, SD = 1.49, n = 50), t(141.81) = 2.66, p = .004 

(gerichtet), Cohens d = 0.39. Gemäß Cohen (1988) entspricht dies einem kleinen Effekt. Deskriptive 

Statistiken für die Statistikangst sind für alle Schultypen auch in Tabelle L.4 zusammengefasst. 

Tabelle L.4 

Mittelwerte und Standardabweichungen für die Statistikangst für die drei Schultypen (Beispiel 6.14) 

Schwerpunkt M SD n 

Sprachen 6.44 1.54 100 

Naturwissenschaft und 

Technik 

5.82 1.58 75 

Kunst und Design 6.39 1.49 50 
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Beispiel 6.15 

Um die Hypothese zu prüfen, wurden entsprechende a-priori Kontraste definiert. Ein t-Test nach Welch 

ergab, dass die Statistikangst von Absolvent:innen von Schulen mit Schwerpunkt Naturwissenschaft 

und Technik entsprechend Hypothese (i) im Mittel (mit 𝛼 = .005) signifikant niedriger ist als diejenige 

von Absolvent:innen der Schultypen mit Schwerpunkten Sprachen und Kunst und Design, t(141.81) = 

2.66, p = .004 (gerichtet), Cohens d = 0.38. Gemäß Cohen (1988) entspricht dies einem kleinen Effekt. 

Zudem ergab ein t-Test nach Welch, dass die Statistikangst von Absolvent:innen von Schulen mit 

Schwerpunkt Sport sich entgegen Hypothese (ii) im Mittel (mit 𝛼 = .005) nicht signifikant von der 

Statistikangst von Absolvent:innen der Schultypen mit Schwerpunkten Sprachen und Kunst und Design 

unterscheidet, t(138.44) = 2.69, p = .008 (ungerichtet), Cohens d = 0.39. Gemäß Cohen (1988) entspricht 

dies einem kleinen Effekt. Deskriptive Statistiken für die Statistikangst sind für alle Schultypen in 

Tabelle L.5 zusammengefasst. 

Tabelle L.5 

Mittelwerte und Standardabweichungen für die Statistikangst für die drei Schultypen (Beispiel 6.15) 

Schwerpunkt M SD n 

Sprachen 6.44 1.54 100 

Naturwissenschaft und 

Technik 

5.82 1.58 75 

Kunst und Design 6.39 1.49 50 

Sport 7.03 1.63 75 
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Lösungen der Übungsaufgaben zu Kapitel 7 

Beispiel 7.1 

Sie unterscheiden sich nicht. 

Beispiel 7.2 

(i) Normalverteilung der AV in den einzelnen Populationen; (ii) Varianzgleichheit (auch als 

Varianzhomogenität bzw. Homoskedastizität bezeichnet); (iii) Unabhängigkeit der Beobachtungen bzw. 

Messungen; (iv) Intervallskalenniveau der AV. 

Beispiel 7.3 

Richtig: (a)-(c). Falsch: (d). 

Beispiel 7.4 

Richtig: (b)-(d). Falsch: (a). 

Beispiel 7.5 

Es wurde eine zweifaktorielle Varianzanalyse ohne Messwiederholung mit den Faktoren Geschlecht 

(zwei Stufen) und dem Faktor Alkoholmenge (drei Stufen) durchgeführt. Levenes Test war nicht 

signifikant (p > .05), daher wurde von Varianzhomogenität ausgegangen. 

Im Mittel waren die ausgewählten Gesprächspartner:innen von Männern und Frauen nicht 

signifikant unterschiedlich attraktiv (F(1,42) = 2.03, p = .161, ηp
2 = .05, d.h. kleiner Effekt gemäß Cohen 

(1988)). Im Mittel unterscheidet sich die Attraktivität der ausgewählten Gesprächspartner:innen 

signifikant in Abhängigkeit der Menge getrunkenen Alkohols (F(2,42) = 20.07, p < .001, ηp
2 = .49, d.h. 

großer Effekt gemäß Cohen (1988)). Zwischen Geschlecht und Alkoholmenge besteht zudem eine 

signifikante Interaktion (F(2,42) = 11.91, p < .001, ηp
2 = .36, d.h. großer Effekt gemäß Cohen (1988)). 

Zur weiteren Analyse paarweiser Mittelwertsunterschiede wurden post-hoc Tests mit einer Korrektur 

der p-Werte für multiple Vergleiche gemäß Bonferroni durchgeführt. Im Folgenden werden lediglich 

korrigierte p-Werte berichtet. 

Für die Menge getrunkenen Alkohols von 0 (p = .177) oder 2 (p = .342) Pint Bier unterschieden 

sich die ausgewählten Gesprächspartner:innen in ihrer Attraktivität nicht signifikant zwischen Männern 
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und Frauen. Bei einer Menge getrunkenen Alkohols von 4 Pint Bier waren die ausgewählten 

Gesprächspartner:innen von Männern jedoch signifikant weniger attraktiv als die ausgewählten 

Gesprächspartner:innen von Frauen bei derselben Menge getrunkenen Alkohols (p < .001).  

Zudem waren die Gesprächspartner:innen von Männern bei 4 Pint Bier signifikant weniger 

attraktiv als bei 2 oder 0 Pint Bier (jeweils p < .001). Bei 2 und 0 Pint Bier bestand kein signifikanter 

Unterschied (p > .999). Gesprächspartner:innen von Frauen unterschieden sich für keinen paarweisen 

Vergleich signifikant in ihrer Attraktivität (0 und 2 Pint Bier: p > .999; 0 und 4 Pint Bier: p > .999; 2 

und 4 Pint Bier: p = .836). 

Punkt- und Intervallschätzungen für die Attraktivität der Gesprächspartner:innen in 

Abhängigkeit vom Geschlecht der Studienteilnehmer:innen und der von ihnen getrunkenen Menge 

Alkohols sind in Abbildung L.21 dargestellt. Mittelwerte, Standardabweichungen und Gruppengrößen 

sind in Tabelle L.6 zusammengefasst. 

Tabelle L.6 

Deskriptive Statistiken 

Geschlecht Alkoholmenge M SD n 

Männlich 0 Pints 66.88 10.33 8 

 2 Pints 66.87 12.52 8 

 4 Pints 35.63 10.84 8 

Weiblich 0 Pints 60.62 4.96 8 

 2 Pints 62.50 6.55 8 

 4 Pints 57.50 7.07 8 
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Abbildung L.21. Punkt- und Intervallschätzungen der AV in Beispiel 7.5. 

Beispiel 7.6 

(a) UV1: Unterrichtsmethode, UV2: Unterrichtsfach. AV: Erzielte Punkte beim Wissenstest. 

(b) Jeweils 2 Stufen. Bei UV1: Tafel vs. Powerpoint. Bei UV2: Geschichte vs. Mathematik. 

(c) Mit der statistischen Testung der Interaktion und des Haupteffekts für das Unterrichtsfach. 

(d) Siehe unten. 

Ergebnisbericht: Es wurde eine zweifaktorielle Varianzanalyse ohne Messwiederholung mit den 

Faktoren Unterrichtsmethode (zwei Stufen: Tafel vs. Powerpoint) und Unterrichtsfach (zwei Stufen: 

Geschichte vs. Mathematik) durchgeführt. Levenes Test war nicht signifikant (p > .05), daher wurde 

von Varianzhomogenität ausgegangen. 

Im Mittel waren die erzielten Punkte beim Wissenstest für die beiden Unterrichtsmethoden (mit 

𝛼 = .005) nicht signifikant unterschiedlich (F(1,176) = 0.31, p = .581, ηp
2 < .01). Im Mittel waren die 

erzielten Punkte beim Wissenstest auch für die beiden Unterrichtsfächer (mit 𝛼 = .005) nicht signifikant 

unterschiedlich (F(1,176) = 3.25, p = .073, ηp
2 = .02, d.h. kleiner Effekt gemäß Cohen (1988)). 
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Allerdings ergab sich (mit 𝛼 = .005) eine signifikante Interaktion zwischen Unterrichtsfach und 

Methode, F(1,176) = 74.41, p < .001, ηp
2 = .30, was einem großen Effekt gemäß Cohens Heuristik (1988) 

entspricht. Zur weiteren Analyse paarweiser Mittelwertsunterschiede wurden post-hoc Tests mit einer 

Korrektur der p-Werte für multiple Vergleiche gemäß Bonferroni durchgeführt. Im Folgenden werden 

lediglich korrigierte p-Werte berichtet. 

Während Schüler:innen im Geschichtsunterricht signifikant mehr mit der Methode Powerpoint 

lernen als mit der Methode Tafel (p < .001), ist es im Mathematikunterricht gerade umgekehrt: dort 

lernen Schüler:innen signifikant mehr mit der Methode Tafel als mit der Methode Powerpoint (p < .001). 

Auch innerhalb der beiden Methoden gibt es signifikante Unterschiede zwischen den beiden 

Unterrichtsfächern. Mit der Methode Tafel lernen Schüler:innen signifikant mehr in Mathematik als in 

Geschichte (p < .001). Mit der Methode Powerpoint ist es wiederum gerade umgekehrt: mit dieser 

Methode lernen Schüler:innen signifikant mehr in Geschichte als in Mathematik (p < .001). Dabei 

scheint der Unterschied zwischen den Fächern (deskriptiv) ausgeprägter für die Methode Tafel 

(Punktschätzung für Betrag der Mittelwertsdifferenz: 39.16 mit plausiblen Werten gemäß 95%-KI 

[28.68, 49.64]; Konfidenzniveau korrigiert gemäß Bonferroni) als für die Methode Powerpoint 

(Punktschätzung für Betrag der Mittelwertsdifferenz: 25.62 mit plausiblen Werten gemäß 95%-KI 

[15.14, 36.10]; Konfidenzniveau korrigiert gemäß Bonferroni). Die deutliche Überlappung der 95%-KI 

zeigt aber auch an, dass die Gleichheit dieser Mittelwertsdifferenz für die beiden Methoden nicht mit 

hoher Konfidenz ausgeschlossen werden kann. 

Punkt- und Intervallschätzungen für die erzielten Punkte beim Wissenstest in Abhängigkeit von 

Unterrichtsfach und -methode sind in Abbildung L.22 dargestellt. Mittelwerte, Standardabweichungen 

und Gruppengrößen sind in Tabelle L.7 zusammengefasst. 
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Tabelle L.7 

Deskriptive Statistiken 

Methode Fach M SD n 

Tafel Geschichte 30.04 23.80 45 

 Mathematik 69.20 25.20 45 

Powerpoint Geschichte 60.36 26.88 45 

 Mathematik 34.73 28.75 45 

 

 

Abbildung L.22. Punkt- und Intervallschätzungen der AV in Beispiel 7.6. 
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Beispiel 7.7 

Ergebnisbericht: Es wurde eine zweifaktorielle Varianzanalyse ohne Messwiederholung mit den 

Faktoren Altersgruppe (drei Stufen: jung, d.h. 18-30 Jahre, mittel, d.h. 31-50 Jahre, alt, d.h. > 50 Jahre) 

und Trainingsmethode (zwei Stufen: konventionelles Krafttraining mit Gewichten vs. HIIT mit eigenem 

Körpergewicht) durchgeführt. Das Signifikanzniveau wurde zu 𝛼 = .005 gewählt. 

Insgesamt wurden Daten von 270 Personen in einem balancierten Design erhoben. Levenes Test war 

nicht signifikant (p > .05), daher wurde von Varianzgleichheit in den einzelnen Populationen 

ausgegangen. 

Im Mittel war die allgemeine Fitness zwischen den unterschiedlichen Altersgruppen signifikant 

verschieden (F(2,264) = 54.15, p < .001, ηp
2 = .29, d.h. ein großer Effekt gemäß Cohen (1988)). Im 

Mittel war die erzielte allgemeine Fitness auch zwischen den beiden Fitnessprogrammen signifikant 

unterschiedlich (F(1,264) = 24.18, p < .001, ηp
2 = .08, d.h. ein mittlerer Effekt gemäß Cohen (1988)). 

Die Interaktion zwischen den beiden Faktoren war nicht signifikant (F(2,264) = 2.43, p = .090, ηp
2 = 

.02, d.h. ein kleiner Effekt gemäß Cohen (1988)). Zur weiteren Analyse paarweiser 

Mittelwertsunterschiede wurden post-hoc Tests mit einer Korrektur der p-Werte für multiple Vergleiche 

gemäß Bonferroni durchgeführt. Im Folgenden werden lediglich korrigierte p-Werte berichtet. 

Sowohl bei konventionellem Krafttraining mit gewichten als auch bei HIIT-Programmen mit 

dem eigenen Körpergewicht nahm die erzielte, allgemeine Fitness mit fortschreitendem Alter ab. Bei 

konventionellem Krafttraining waren alle paarweisen Mittelwertsunterschiede zwischen den 

unterschiedlichen Altersgruppen signifikant (𝑝 ≤ .001). Bei HIIT-Programmen war der Unterschied 

zwischen jungen und mittleren Erwachsenen nicht signifikant (𝑝 > .999), während die Unterschiede 

zwischen jungen und alten sowie mittleren und alten Erwachsenen jeweils signifikant waren (𝑝 < .001). 

Zudem unterschieden sich konventionelles Krafttraining und HIIT-Programme sowohl bei mittleren (𝑝 

< .001) als auch älteren (𝑝 = .001) Erwachsenen signifikant, jedoch nicht bei jungen Erwachsenen (𝑝 = 

.264). Bei allen Altersgruppen war die erzielte allgemeine Fitness jedoch bei HIIT-Programmen höher 

als bei konventionellem Krafttraining. 
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Punkt- und Intervallschätzungen für die erzielte allgemeine Fitness in Abhängigkeit von Altersgruppe 

und verwendeter Trainingsmethode sind in Abbildung L.23 dargestellt. Mittelwerte, 

Standardabweichungen und Gruppengrößen sind in Tabelle L.8 zusammengefasst. 

Tabelle L.8 

Deskriptive Statistiken 

Altersgruppe Training M SD n 

Jung: 18-30 Jahre Konv. Kraft 73.84 15.84 45 

 HIIT 77.64 17.74 45 

Mittel: 31-50 Jahre Konv. Kraft 61.71 17.03 45 

 HIIT 75.82 15.67 45 

Alt: > 50 Jahre Konv. Kraft 45.96 14.86 45 

 HIIT 56.98 15.36 45 

 

 

Abbildung L.23. Punkt- und Intervallschätzungen für die erzielte allgemeine Fitness in Abhängigkeit 

von Altersgruppe und verwendeter Trainingsmethode. 
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Beispiel 7.8 

Um die Fragestellung zu untersuchen wurde eine zweifaktorielle Varianzanalyse ohne 

Messwiederholung durchgeführt. Deskriptive Statistiken für alle Kombinationen aus Faktorstufen sind 

in Tabelle L.9 angegeben. 

Es ergibt sich ein signifikanter Haupteffekt für das Geschlecht, F(1,116) = 18.11, p < .001, 𝜂𝑝
2 

= .14, d.h. ein großer Effekt gemäß Cohen (1988). Es ergibt sich auch ein signifikanter Haupteffekt für 

die Bedingung, F(1,116) = 13.76, p < .001, 𝜂𝑝
2 = .11, d.h. ein mittlerer Effekt gemäß Cohen (1988). 

Zudem ergibt sich eine signifikante Interaktion, F(1,116) = 17.16, p < .001, 𝜂𝑝
2 = .13, ein mittlerer Effekt 

gemäß Cohen (1988). 

Paarweise post-hoc Vergleiche mit Bonferroni-korrigierten p-Werten zeigen, dass sich in der 

Kontrollbedingung Frauen und Männer nicht signifikant in der mittleren Symptomänderung 

unterscheiden (p = .936), in der Interventionsbedingung allerdings schon (p < .001). Während sich für 

Frauen Kontrollbedingung und Intervention in der mittleren Symptomänderung signifikant 

unterscheiden (p < .001), tun sie für Männer nicht (p = .760). 

Tabelle L.9 

Mittelwerte und Standardabweichungen der Symptomstärkeänderungen sowie Stichprobenumfänge für 

alle Kombinationen aller Faktorstufen 

Geschlecht Bedingung M SD n 

Weiblich tau 5.57 6.91 30 

Weiblich Intervention 17.07 7.83 30 

Männlich tau 5.40 9.01 30 

Männlich Intervention 4.77 8.19 30 
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Lösungen der Übungsaufgaben zu Kapitel 8 

Beispiel 8.1 

Richtig: (b), (c). Falsch: (a), (d). 

Beispiel 8.2 

Richtig: (a), (c). Falsch: (b), (d). 

Beispiel 8.3 

Nr. Aussage R/F 

1) Bei der Effektstärke 𝜂𝑝
2 werden Werte ab 0.01/0.06/0.14 gemäß Cohen (1988) als 

klein/mittel/groß bezeichnet. 

R 

2) Beim Box Test handelt es sich um einen Test der Sphärizität. F 

3) Die Greenhouse-Geisser-Korrektur ist zu konservativ, weshalb besser die Huynh-

Feldt-Korrektur verwendet werden sollte. 

R 

4) Die Gleichheit der Kovarianzmatrizen kann mit Mauchlys Test überprüft werden. F 

Beispiel 8.4 

Zur Beantwortung der Fragestellung wurde eine einfaktorielle Varianzanalyse mit Messwiederholung 

durchgeführt. Beim Innersubjektfaktor handelt es sich um den Messzeitpunkt des Umweltverhaltens mit 

den drei Stufen (i) vor der Veranstaltung im Nationalpark, (ii) ein Monat nach der Veranstaltung und 

(iii) ein Jahr nach der Veranstaltung. Als Signifikanzniveau wurde 𝛼 = .005 gewählt. 

Da die Voraussetzung der Sphärizität verletzt war (p < .001), werden im Folgenden Huynh-

Feldt-korrigierte Werte berichtet. Der Messzeitpunkt hat einen signifikanten Einfluss auf das 

Umweltverhalten, F(1.58,209.11) = 7.09, p = .002, 𝜂𝑝
2 = .05, d.h. 5% der Variabilität im 

Umweltverhalten können durch den Messzeitpunkt erklärt werden, was gemäß Cohen (1988) einem 

kleinen Effekt entspricht. Paarweise post-hoc Vergleiche mit p-Wert-Korrektur für multiple Vergleiche 

gemäß Fisher’s LSD Methode ergaben zudem, dass sich das mittlere Umweltverhalten zu Messzeitpunkt 

1 von dem zu Messzeitpunkt 2 signifikant unterscheidet (p < .001), aber nicht von dem zu Messzeitpunkt 

3 (p = .076). Ferner unterscheidet sich das mittlere Umweltverhalten zu Messzeitpunkt 2 auch nicht 
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signifikant von dem zu Messzeitpunkt 3 (p = .081). Deskriptive Statistiken sind in Tabelle L.10 gegeben. 

Das Umweltverhalten ist in der Tat zu den Messzeitpunkten 2 und 3 höher als zum Messzeitpunkt 1. 

Tabelle L.10 

Deskriptive Statistiken 

Messzeitpunkt M SD n 

1 12.61 5.79 133 

2 13.36 6.08 133 

3 13.05 6.31 133 

Beispiel 8.5 

Zur Beantwortung der Fragestellung wurde eine zweifaktorielle Varianzanalyse mit vollständiger 

Messwiederholung durchgeführt. Bei einem Messwiederholungsfaktor handelt es sich um den 

Messzeitpunkt mit den drei Stufen (i) eine halbe Stunde nach dem Lernen, (ii) ein Tag nach dem Lernen, 

und (iii) eine Woche nach dem Lernen. Beim anderen Messwiederholungsfaktor handelt es sich um die 

Bedeutung des Lernmaterials mit den zwei Stufen (i) eher niedrig (sinnlose Silbenpaare) und (ii) eher 

hoch (Vokabeln: Paare aus deutschen und japanischen Begriffen). Als Signifikanzniveau wurde 𝛼 = 

.005 gewählt. 

Da die Voraussetzung der Sphärizität sowohl für den Messzeitpunkt (p = .012) als auch die 

Interaktion zwischen Messzeitpunkt und Bedeutung (p = .036) verletzt war, werden im Folgenden 

Huynh-Feldt-korrigierte Werte berichtet. Es gibt einen signifikanten Haupteffekt für den Messzeitpunkt, 

F(1.77,86.58) = 170.61, p < .001, 𝜂𝑝
2 = .78, d.h. gemäß Cohen (1988) ein großer Effekt. Ebenso gibt es 

einen signifikanten Haupteffekt für die Bedeutung des Lernmaterials, F(1,49) = 182.64, p < .001, 𝜂𝑝
2 = 

.79, d.h. gemäß Cohen (1988) wiederum ein großer Effekt. Schließlich gibt es auch eine signifikante 

Interaktion zwischen den beiden Faktoren, F(1.83,89.77) = 29.75, p < .001, 𝜂𝑝
2 = .38, d.h. gemäß Cohen 

(1988) wiederum ein großer Effekt. 

Um paarweise Unterschiede zu untersuchen wurden post-hoc Tests mit p-Wert-Korrektur für 

multiple Vergleiche gemäß Bonferroni berechnet. Es zeigt sich, dass die Behaltensleistung für beide 

Stufen des Faktors Bedeutung über die Zeit hinweg abnehmen. Für die sinnlosen Silben unterscheidet 
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sich die mittlere Behaltensleistung zwischen Zeitpunkt 1 und 2 sowie 1 und 3 signifikant (jeweils p < 

.001), zwischen Zeitpunkt 2 und 3 jedoch nicht signifikant (p = .007). Selbiges gilt für die deutsch-

japanischen Begriffspaare: auch hier unterscheidet sich die mittlere Behaltensleistung signifikant 

zwischen Zeitpunkt 1 und 2 sowie Zeitpunkt 1 und 3 (jeweils p < .001), jedoch nicht signifikant 

zwischen Zeitpunkt 2 und 3 (p = .317). Die Behaltensleistung unterscheidet sich jedoch signifikant 

zwischen den beiden Bedeutungsstufen zu allen drei Zeitpunkten (jeweils p < .001). Die 

Behaltensleistung ist immer höher im Fall der deutsch-japanischen Vokabeln. 

Deskriptive Statistiken sind in Tabelle L.11 angeführt. Eine graphische Darstellung dieser 

Ergebnisse inklusive 95%-KI für die mittleren Leistungsindizes ist in Abbildung L.24 gegeben. 

Tabelle L.11 

Deskriptive Statistiken 

Zeitpunkt Bedeutung M SD n 

1 Sinnlose Silben 10.12 3.43 50 

 Vokabeln 14.88 2.19 50 

2 Sinnlose Silben 3.00 2.78 50 

 Vokabeln 11.78 3.51 50 

3 Sinnlose Silben 1.64 2.08 50 

 Vokabeln 11.10 4.91 50 

 

Abbildung L.24. Behaltensleistung über die drei untersuchten Zeitpunkte hinweg für jeweils 17 deutsch-

japanische Vokabeln (rote Linie) und Paare aus sinnlosen Silben (blaue Linie). 
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Beispiel 8.6 

Zur Erhellung der Fragestellung wurde eine zweifaktorielle Varianzanalyse mit einem gemischten 2x3 

Design durchgeführt. Beim Faktor ohne Messwiederholung handelt es sich um die Medikation mit den 

drei Stufen wie in der Angabe gegeben. Beim Messwiederholungsfaktor handelt es sich um die beiden 

Blutdruckwerte, d.h. den systolischen und den diastolischen Blutdruck. 

Die beiden Blutdruckwerte unterscheiden sich signifikant, F(1,119) = 13953.96, p < .001, 𝜂𝑝
2 = 

.99, d.h. die Art des Blutdruckwerts (d.h. systolisch oder diastolisch) erklärt 99% der Variabilität in den 

Werten, die nicht bereits durch andere systematische Effekte aufgeklärt werden. Auch für die 

Medikation gibt es einen signifikanten Haupteffekt, F(2,119) = 98.11, p < .001, 𝜂𝑝
2 = .62, d.h. die 

Medikation klärt 62% der Variabilität der Werte auf, die nicht durch andere Effekte aufgeklärt werden. 

Schließlich ist auch die Interaktion zwischen Art des Blutdruckwerts und Medikation signifikant, 

F(2,119) = 7.49, p < .001, 𝜂𝑝
2 = .11, was gemäß Cohen (1988) einem mittleren Effekt entspricht. 

Paarweise post-hoc Vergleiche mit p-Wert-Korrektur gemäß Bonferroni zeigen, dass beide 

Blutdruckarten über die steigenden Medikationen hinweg abnehmen. Für beide Arten von 

Blutdruckwerten unterscheiden sich die Messwerte zwischen allen Medikationen signifikant (p < .001). 

Auch die beiden Blutdruckwerte unterscheiden sich für alle Stufen der Medikation signifikant 

voneinander (p < .001) mit plausiblen Bereichen für den Unterschied zwischen den Werten, die sehr gut 

dem Unterschied von etwa 45 mmHg zwischen den Normalbereichen für die beide Werte entsprechen. 

Die plausiblen Werte für die Blutdruckwerte für die drei Stufen der Medikation sind in Tabelle 

L.12 numerisch gegeben und in Abbildung L.25 graphisch dargestellt. Tabelle L.12 enthält zudem 

deskriptive Statistiken für die Blutdruckwerte für die drei Medikationen. Man sieht, dass die plausiblen 

Werte für die Medikation von 16 mg Candesartan morgens und 8 mg Candesartan sowie 5 mg 

Amlodipin abends im Normalbereich für die beiden Arten der Blutdruckwerte liegen, während sie für 

die anderen beiden Medikationen teilweise zu hoch ausfallen. Die genannte Medikation scheint also von 

den drei überprüften Medikationen die passendste für den Patienten zu sein. 
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Tabelle L.12 

Deskriptive Statistiken und 95%-KI 

Medikation Blutdruckwert M 95%-KI SD n 

2x8 mg Candesartan Systolisch 148.00 [145.00,151.00] 8.13 20 

 Diastolisch 102.43 [99.27,105.59] 7.54 20 

16+8 mg Candasartan Systolisch 128.44 [126.89,129.99] 7.14 75 

 Diastolisch 84.14 [82.51,85.77] 7.83 75 

16 mg Candesartan + 

8/5 mg CandAm 

Systolisch 121.67 [119.08,124.25] 4.15 27 

 Diastolisch 74.20 [71.48,76.92] 4.09 27 

 

Abbildung L.25. Systolische (blaue Linie) und diastolische mittlere Blutdruckwerte und deren 95%-KI 

für die drei unterschiedlichen Medikationen aus Beispiel 8.6. 
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Beispiel 8.7 

Antworten: 

(a) Es ist eine zweifaktorielle Varianzanalyse mit Messwiederholung mit einem gemischten 2x3 

Design durchzuführen. Bei dem Zeitpunkt des Leistungstests (Variablen t1, t2, t3) handelt es 

sich um einen dreistufigen Innersubjektfaktor, bei der Art der Lehrmethode (Variable 

Lehrmethode) um einen zweistufigen Zwischensubjektfaktor. Mit Ausnahme der 

Sphärizitätsannahme sind alle Voraussetzungen für die Varianzanalyse mit Messwiederholung 

erfüllt: (i) bei der AV handelt es sich um eine intervallskalierte Variable, (ii) es liegt ein 

balanciertes Design vor, (iii) die Levene-Tests sowie der Box Test sind allesamt nicht 

signifikant (p > .05), (iv) die Normalverteilungsvoraussetzung muss gemäß Angabe nicht 

überprüft werden. Aufgrund der Verletzung der Sphärizitätsvoraussetzung (W(2) = 0.62, p < 

.001) werden im Folgenden Huynh-Feldt-korrigierte Teststatistiken berichtet. 

(b) Die Ergebnisse im Leistungstest unterscheiden sich signifikant zwischen den einzelnen 

Testzeitpunkten, F(1.46, 346.94) = 7768.64, p < .001, ηp
2 = 0.97. Gemäß Cohen (1988) liegt 

damit ein großer Effekt vor. 

(c) Die Ergebnisse im Leistungstest unterscheiden sich signifikant zwischen den beiden 

Lehrmethoden, F(1, 238) = 15.20, p < .001, ηp
2 = 0.06. Gemäß Cohen (1988) liegt damit ein 

mittlerer Effekt vor. 

(d) Es liegt eine signifikante Interaktion zwischen Lehrmethode und Zeitpunkt vor, F(1.46, 346.94) 

= 604.18, p < .001, ηp
2 = 0.72. Gemäß Cohen (1988) liegt damit ein großer Effekt der Interaktion 

vor. 

(e) Sämtliche Mittelwerte und Standardabweichungen sind in Tabelle L.13 zusammengefasst. Die 

Gruppengrößen waren jeweils zu n = 120 gegeben. Im Folgenden werden für multiple paarweise 

Vergleiche gemäß Bonferroni korrigierte p-Werte berichtet. Zu Zeitpunkt 1 liegt kein 

signifikanter Unterschied in den Ergebnissen beim Leistungstest für die beiden Lehrmethoden 

vor, p = .753. Zu Zeitpunkt 2 ist das mittlere Testergebnis signifikant höher bei der traditionellen 

Lehrmethode als bei Verwendung der flipped classroom Methode, p = .022. Zu Zeitpunkt 3 ist 

das mittlere Testergebnis signifikant höher bei der flipped classroom Methode als bei der 
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traditionellen Lehrmethode, p < .001. Sowohl bei der traditionellen Lehrmethode als auch bei 

der flipped classroom Methode ist das mittlere Testergebnis zu Zeitpunkt 1 jeweils signifikant 

niedriger als zu Zeitpunkt 2 (jeweils p < .001) und auch als zu Zeitpunkt 3 (jeweils p < .001), 

während es zu Zeitpunkt 3 jeweils signifikant niedriger ist als zu Zeitpunkt 2 (jeweils p < .001). 

Tabelle L.13 

Deskriptive Statistiken 

Zeitpunkt Lehrmethode M SD n 

1 Traditionell 29.08 11.15 120 

1 Flipped classroom 29.53 11.02 120 

2 Traditionell 83.00 12.69 120 

2 Flipped classroom 79.26 12.49 120 

3 Traditionell 42.80 16.87 120 

3 Flipped classroom 65.93 16.47 120 

Beispiel 8.8 

Antworten: 

(a) Zweifaktorielle Varianzanalyse mit Messwiederholung mit gemischtem 2x2 Design mit einem 

Innersubjektfaktor (Zeitpunkt mit zwei Faktorstufen: (1) vor und (2) nach der Therapie) und 

einem Zwischensubjektfaktor (Therapieform; ebenfalls zwei Stufen: (1) kognitive 

Verhaltenstherapie oder (2) achtsamkeitsbasierte Therapie). 

(b) Zur Klärung der Fragestellung wurde eine Varianzanalyse mit Messwiederholung (gemischtes 

Design) durchgeführt. Die Depressionsschwere unterscheidet sich signifikant zwischen den 

beiden Messzeitpunkten (vor und nach den jeweiligen Therapien), F(1, 98) = 129.37, p < .001, 

ηp
2 = 0.57. Gemäß Cohen (1988) liegt damit eine große Effektstärke für den Effekt des 

Messzeitpunkts vor. Die Depressionsschwere unterscheidet sich nicht statistisch signifikant 

zwischen den beiden Therapieformen, F(1, 98) = 0.158, p = .692, ηp
2 < 0.01. Allerdings ergibt 

sich eine signifikante Interaktion zwischen Messzeitpunkt und Therapieform, F(1, 98) = 10.84, 

p = .001, ηp
2 = 0.10, die gemäß Cohen (1988) einem mittleren Effekt entspricht. 
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Paarweise post-hoc Vergleiche mit Bonferroni-Korrektur zeigen, dass sich die 

Depressionsschweren für beide Therapieformen weder zu Zeitpunkt 1 (p = .499) noch zu 

Zeitpunkt 2 (p = .206) signifikant voneinander unterscheiden. Zudem bessert sich die 

Depressionsschwere signifikant sowohl bei der kognitiven Verhaltenstherapie (p < .001) von 

Zeitpunkt 1 (M = 41.02, SD = 9.27) zu Zeitpunkt 2 (M = 30.82, SD = 11.99) als auch bei der 

achtsamkeitsbasierten Therapie (p < .001), ebenfalls von Zeitpunkt 1 (M = 39.60, SD = 11.53) 

zu Zeitpunkt 2 (M = 33.98, SD = 12.81). 

(c) Es handelt sich um eine typische hybride Interaktion. Die Depressionsschwere bessert sich zwar 

in jedem Fall (Haupteffekt des Messzeitpunkts), unabhängig von der Therapieform, aber die 

Besserung ist deutlicher ausgeprägter bei der kognitiven Verhaltenstherapie (signifikanter 

Interaktionseffekt). 

Beispiel 8.9 

Ergebnisbericht: Um Unterschiede im moralischen Verhalten und dem Bedürfnis nach kognitiven 

Anforderungen je nach Spielegenre zu untersuchen, wurde eine zweifaktorielle Varianzanalyse ohnemit 

Messwiederholung durchgeführt. Dabei wies der Zwischensubjektfaktor „Spielegenre“ zweidrei 

Faktorstufen auf. Der Innersubjektfaktor berücksichtigte, um welchen der beiden Fragebögen es sich 

handelte. Die Interaktion zwischen den beiden Faktoren lässt darauf schließen, ob es zwischen den 

Spielegenres Unterschiede im Antwortverhalten auf die beiden Fragebögen gibt. 

Die Varianzanalyse ergab einen signifikanten Haupteffekt für die Art des Fragebogens, 

F(1,297) = 9.64, p = .031.002, ηp
2 = .03. Es ergab sich auch ein signifikanter Haupteffekt für das 

Spielegenre, F(2,297) = 27.21, p < .001, ηp
2 = .16. Die Interaktion zwischen Fragebogenart und 

Spielegenre war allerdings nichtauch signifikant, F(2,297) = 19.42, p = .116< .001, ηp
2 = .12, weshalb 

die Effekte der beiden Faktoren nicht unabhängig voneinander interpretiert werden können. 

Bei Spieler:innen, die besonders gerne Egoshooter spielen, wurden sowohl beim 

Moralfragebogen (M = 49.90, SD = 9.09) als auch beim Kognitionsfragebogen (M = 51.34, SD = 9.52) 

vergleichsweise geringe Werte erreicht, die sich auch nicht signifikant voneinander unterschieden, 

p = .188. Auch die Punktwerte der Spieler:innen, die besonders gerne Strategiespiele spielen, waren sehr 
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ähnlich bei Moralfragebogen (M = 51.3458.23, SD = 9.529.61) und bei Kognitionsfragebogen 

(M = 58.38, SD = 9.45), fielen aber vergleichsweise deutlich höher aus und unterschieden sich in beiden 

Fällen signifikant von den jeweiligen Werten der Egoshooter-Spieler:innen (p < .001). 

Rollenspieler:innen erzielten hingegen ganz andere Werte im Moralfragebogen (M = 59.87, SD = 9.01) 

als im Kognitionsfragebogen (M = 52.41, SD = 9.43), der Unterschied war nichtauch signifikant 

(p < .001). Rollenspieler:innen erzielten im Kognitionsfragebogen ähnliche Werte wie Egoshooter-

Spieler:innen (p = .631> .999), während sie im Moralfragebogen ähnliche Werte wie Strategie-

Spieler:innen erzielten (p > .999=.631). 

Beispiel 8.10 

Ergebnisbericht: Zur statistischen Analyse wurde eine zweifaktorielle Varianzanalyse ohnemit 

Messwiederholung (gemischtes Design) durchgeführt. Beim zweistufigen InnerZwischensubjektfaktor 

handelt es sich um die Variable, die angibt, ob es sich um eine Person mit besonders niedriger oder 

hoher Selbstwirksamkeit handelt. Beim ebenfalls zweistufigen ZwischenInnersubjektfaktor handelt es 

sich um die Variable, die angibt, ob es sich um das Lernergebnis zur Spiel- oder zur Nichtspielversion 

der Lernaufgabe handelt. 

Es ergibt sich (mit 𝛼 = .05) einkein signifikanter Haupteffekt für die Selbstwirksamkeit (niedrig 

oder hoch), F(1,158) = 0.28, p = .002.597, ηp
2 = .60< .01. Es ergibt sich einkein signifikanter 

Haupteffekt für die Version der Lernaufgabe (Spiel oder Nichtspiel), F(1,158) = 0.10, p = .001.753, 

ηp
2 = .75< .01. Es ergibt sich eine signifikante Interaktion zwischen den beiden Faktoren, 

F(1,158) = 3769.10, p < .001, ηp
2 = .96. 

Paarweise post-hoc Vergleiche mit gemäß Bonferroni korrigierten p-Werten ergeben, dass 

Personen mit niedriger Selbstwirksamkeit in der Spielversion (M = 45.56, SD = 9.81) signifikant höhere 

Ergebnisse als in der Nichtspielversion (M = 40.71, SD = 9.74) erzielen, p < .001. Bei Personen mit 

hoher Selbstwirksamkeit ist es gerade umgekehrt: Diese erzielen in der Spielversion (M = 41.44, 

SD = 8.01) signifikant niedrigere Ergebnisse als in der Nichtspielversion (M = 46.34, SD = 8.18), 

p < .001. Zudem erzielen in der Spielversion Personen mit niedriger Selbstwirksamkeit signifikant 

höhere Ergebnisse als Personen mit hoher Selbstwirksamkeit, p < .001= .004. In der Nichtspielversion 
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hingegen erzielen Personen mit niedriger Selbstwirksamkeit signifikant niedrigere Ergebnisse als 

Personen mit hoher Selbstwirksamkeit, p < .001. 

Beispiel 8.11 

Zur Erhellung der Fragestellung wurde eine einfaktorielle Varianzanalyse mit Messwiederholung 

durchgeführt. Deskriptive Statistiken für die Haarqualität der n = 160 Personen zu allen drei Zeitpunkten 

sind in Tabelle L.17 gegeben. Die Haarqualität unterscheidet sich im Mittel (mit 𝛼 = .005) signifikant 

zwischen den drei Zeitpunkten, F(2, 318) = 163.94, p < .001, 𝜂𝑝
2 = .51. D.h., gemäß Cohen (1988) liegt 

ein großer Effekt des Zeitpunkts für die resultierende Haarqualität vor. Paarweise post-hoc Vergleiche 

mit Bonferroni-Korrektur für die sich ergebenden p-Werte zeigen, dass die Haarqualität zu Zeitpunkt 1 

zwar im Mittel mit signifikant niedrigeren Werten beurteilt wird als zu Zeitpunkt 2 (p < .001), aber mit 

signifikant höheren als zu Zeitpunkt 3 (p < .001). Die Haarqualität zu Zeitpunkt 2 wird zudem im Mittel 

auch mit signifikant höheren Werten beurteilt als zu Zeitpunkt 3 (p < .001). 

Inhaltlich bedeutet dieses Ergebnis, dass die Haarqualität direkt nach der zweimonatigen Pflege 

mit den silikonhaltigen Produkten in der Tat höher ist als zu Beginn des Experiments. Das heißt 

insbesondere auch höher als ohne die Verwendung solcher Produkte, da lediglich Personen ausgewählt 

wurden, die bisher keine solchen Produkte verwendet haben. Allerdings ist die Haarqualität ein Jahr 

nach Beginn des Experiments, und das heißt insbesondere zehn Monate nach Absetzen der Pflege mit 

silikonhaltigen Produkten, geringer als zu Beginn des Experiments. Woran das genau liegen könnte, 

lässt sich aus diesem Experiment allerdings nicht schließen. 

Tabelle L.14 

Mittelwerte und Standardabweichungen für die Haarqualität zu den drei Zeitpunkten (Beispiel 8.11) 

Zeitpunkt M SD 

Beginn des 

Experiments 

49.67 13.86 

2 Monate später 58.78 15.14 

1 Jahr später 39.06 14.57 
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Beispiel 8.12 

Die mittleren Prüfungsleistungen unterscheiden sich signifikant für die beiden Messzeitpunkte, F(1, 98) 

= 122.46, p < .001, 𝜂𝑝
2 = .56, was einem großen Effekt gemäß Cohen (1988) entspricht. Die mittleren 

Prüfungsleistungen unterscheiden sich hingegen nicht signifikant für die beiden Lernmethoden, F(1, 98) 

= 2.02, p = .158, 𝜂𝑝
2 = .02, was einem kleinen Effekt gemäß Cohen (1988) entspricht. Zwischen 

Messzeitpunkt und Lernmethode besteht eine signifikante Interaktion, F(1, 98) = 27.71, p < .001, 𝜂𝑝
2 = 

.22, was gemäß Cohen (1988) einem großen Effekt entspricht. 

Für paarweise post-hoc Vergleiche werden Bonferroni korrigierte p-Werte berichtet. Für beide 

Lernmethoden unterscheiden sich die mittleren Prüfungsleistungen signifikant voneinander zwischen 

beiden Messzeitpunkten (jeweils p < .001). Insbesondere nimmt die Prüfungsleistung für beide 

Lernmethoden von Messzeitpunkt 1 zu Messzeitpunkt 2 zu. Zu Messzeitpunkt 1, d.h. zu 

Semesterbeginn, unterscheiden sich die mittleren Prüfungsleistungen für die beiden Lernmethoden nicht 

signifikant voneinander (p = .168). Zu Messzeitpunkt 2 unterscheiden sich die mittleren 

Prüfungsleistungen für die beiden Lernmethoden allerdings signifikant voneinander (p < .001). Die 

Prüfungsleistung am Semesterende ist höher für das verteilte Lernen als für das massierte Lernen. 

Deskriptive Statistiken sind in Tabelle L.15 zusammengefasst. 

Tabelle L.15 

Mittelwerte und Standardabweichungen für die Prüfungsleistungen zu beiden Messzeitpunkte für beide 

Lernmethoden (Beispiel 8.12) 

Zeitpunkt Lernmethode M SD n 

Semesterbeginn Massiertes Lernen 51.32 8.39 50 

 Verteiltes Lernen 48.99 8.43 50 

Semesterende Massiertes Lernen 56.21 7.88 50 

 Verteiltes Lernen 62.74 9.28 50 
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Beispiel 8.13 

Alle folgenden inferenzstatistischen Ergebnisse beziehen sich jeweils auf ein Signifikanzniveau von 𝛼 

= .005. 

Die mittleren Leistungen beim Mathematiktest unterscheiden sich signifikant für die beiden 

Messzeitpunkte, F(1, 98) = 181.97, p < .001, 𝜂𝑝
2 = .65, was einem großen Effekt gemäß Cohen (1988) 

entspricht. Die mittleren Leistungen unterscheiden sich hingegen nicht signifikant zwischen den beiden 

Lehrmethoden, F(1, 98) = 2.31, p = .132, 𝜂𝑝
2 = .02, was einem kleinen Effekt gemäß Cohens Heuristik 

(1988) entspricht. Zwischen Messzeitpunkt und Lehrmethode besteht eine signifikante Interaktion, F(1, 

98) = 8.86, p = .004, 𝜂𝑝
2 = .08, was gemäß Cohens Heuristik (1988) einem mittleren Effekt entspricht. 

Für paarweise post-hoc Vergleiche werden gemäß Bonferroni korrigierte p-Werte berichtet. Für 

beide Lehrmethoden unterscheiden sich die mittleren Leistungen signifikant zwischen beiden 

Messzeitpunkten (p < .001). Insbesondere nimmt die Leistung im Mittel für beide Lehrmethoden von 

Beginn zu Ende des Semesters zu. Am Beginn des Semesters unterscheiden sich die mittleren 

Leistungen für die beiden Lehrmethoden nicht signifikant voneinander (p = .849). Auch am Ende des 

Semesters unterscheiden sich die mittleren Leistungen für die beiden Lehrmethoden nicht signifikant 

voneinander (p = .025). 

Deskriptive Statistiken sind in Tabelle L.16 zusammengefasst. Wir sehen, dass die 

Mathematikleistung für beide Lehrmethoden zunimmt (Haupteffekt Messzeitpunkt). Die 

Leistungszunahme ist allerdings stärker ausgeprägt für die VR-Methode (Interaktion). 

Tabelle L.16 

Deskriptive Statistiken für beide Messzeitpunkte und Lehrmethoden (Beispiel 8.13) 

Messzeitpunkt Lehrmethode M SD n 

Semesterbeginn VR 37.12 6.91 50 

 Klassisch 40.12 6.30 50 

Semesterende VR 44.92 4.76 50 

 klassisch 45.10 4.70 50 

  



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

410 

Lösungen der Übungsaufgaben zu Kapitel 9 

Beispiel 9.1 

Richtig: (c), (d). Falsch: (a), (b). 

Beispiel 9.2 

Richtig: (d). Falsch: (a), (b), (c). 

Beispiel 9.3 

(a) H0: 𝛽 = 0. H1: 𝛽 ≠ 0. 

(b) H1. 

(c) 𝑎 = 11.45; 𝑏 = 0.34. 

(d) Bei einem Wert der Abhängigkeitskognitionen von 0 Punkten (Einheiten auf der Skala des 

entsprechenden Fragebogens) erwarten wir im Mittel einen Wert von 11.45 für die 

Depressionsschwere auf der BDI-Skala. Eine Erhöhung der Intensität der 

Abhängigkeitskognitionen um einen Punkt geht im Mittel mit einer Erhöhung von 0.34 Punkten 

auf der Skala von Becks Depressionsinventar einher. 

(e) y = 11.45 + 0.34 * x. 

Ergebnisbericht: Ein signifikanter Anteil der Varianz in der Depressionsschwere der untersuchten 50 

Personen kann (mit 𝛼 = .05) auf die Intensität der Abhängigkeitskognitionen zurückgeführt werden, 

F(1,48) = 4.32, p = .043, R2 = 0.08. Gemäß Cohens Heuristiken (1988) entspricht dies einem kleinen 

Effekt. Der Regressionskoeffizient für den Zusammenhang zwischen der Intensität der 

Abhängigkeitskognitionen und der Depressionsschwere unterscheidet sich signifikant von Null, b = 0.34 

(stand. 𝛽 = 0.29), t(48) = 2.08, p = .043 (zweiseitig). Der Koeffizient ist zudem positiv, d.h., je höher 

die Intensität der Abhängigkeitskognitionen, desto höher die Depressionsschwere. Eine Erhöhung der 

Intensität der Abhängigkeitskognitionen um einen Punkt geht gemäß dem einfachen Regressionsmodell 

im Mittel mit einer Erhöhung der Depressionsschwere um 0.34 Punkte auf der Skala von Becks 

Depressionsinventar einher. 
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Beispiel 9.4 

Ergebnisbericht: Ein signifikanter Anteil der Varianz in den Verkaufszahlen kann (mit 𝛼 = .005) auf das 

verwendete Werbebudget zurückgeführt werden, F(1,198) = 99.59, p < .001, R2 = 0.34. Gemäß Cohens 

Heuristiken (1988) entspricht dies einem großen Effekt. Der Regressionskoeffizient für den 

Zusammenhang zwischen der Anzahl verkaufter Alben und dem Werbebudget unterscheidet sich 

signifikant von Null, b = 0.10 (stand. 𝛽 = 0.58), t(198) = 9.98, p < .001 (zweiseitig). Der Koeffizient ist 

zudem positiv, d.h., je höher das Werbebudget, desto höher die Verkaufszahlen. Eine Erhöhung des 

Werbebudgets um 1000 Englische Pfund geht gemäß dem einfachen Regressionsmodell im Mittel mit 

einer Erhöhung der Verkaufszahlen um 96 Alben einher. 

Antworten auf die Fragen: Eine Erhöhung um eine Million Pfund würde im Mittel mit einer Erhöhung 

der Verkaufszahlen um 96000 einhergehen. Der Standardschätzfehler beträgt allerdings 65.99, d.h., die 

Streuung um die erwarteten Verkäufe bei einem bestimmten Werbebudget ist in derselben 

Größenordnung wie die Mehrverkäufe für die Steigerung des Werbebudgets selbst. Das heißt, es gibt 

eine beträchtliche Streuung. Das wiederum heißt, man könnte im Einzelfall sowohl weit über dem 

mittleren Mehrverkauf als auch weit darunter liegen. 

Beispiel 9.5 

Ergebnisbericht: Ein signifikanter Anteil der Varianz in den Gehältern kann (mit 𝛼 = .005) auf die 

Berufserfahrung zurückgeführt werden, F(1,229) = 29.41, p < .001, R2 = 0.11. Gemäß Cohens 

Heuristiken (1988) entspricht dies einem kleinen Effekt. Der Regressionskoeffizient für den 

Zusammenhang zwischen dem Gehalt und der Berufserfahrung unterscheidet sich signifikant von Null, 

b = 3.43 (stand. 𝛽 = 0.34), t(229) = 5.42, p < .001 (zweiseitig). Der Koeffizient ist zudem positiv, d.h., 

je höher die Berufserfahrung, desto höher das Gehalt. Eine Erhöhung der Berufserfahrung um ein Jahr 

geht gemäß dem einfachen Regressionsmodell im Mittel mit einer Erhöhung des Gehalts um 3.43 Pfund 

pro Tag einher. 

  



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

412 

Beispiel 9.6 

Abbildung L.26 zeigt die SPSS-Ausgabe für eine lineare Regressionsanalyse mit dem Kriterium 

Depressionsschwere und dem Prädiktor Abhängigkeitskognitionen. Es ergibt sich eine Steigung 𝑏 = 

0.34 sowie ein Achsenabschnitt 𝑎 = 11.49. Durch den linearen Zusammenhang mit den 

Abhängigkeitskognitionen können 8.3% an Varianz der Depressionsschwere der untersuchten 50 

Personen aufgeklärt werden. 

 

Abbildung L.26. SPSS-Ausgabe für eine lineare Regressionsanalyse mit dem Kriterium 

Depressionsschwere und dem Prädiktor Abhängigkeitskognitionen. 
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Daran ändert sich auch nichts, wenn die Abhängigkeitskognitionen um die mittlere Ausprägung 

der Abhängigkeitskognitionen in der Stichprobe zentriert werden wie Abbildung L.27 zeigt. Allerdings 

ist der Achsenabschnitt nun durch 𝑎 = 18.18 gegeben. Das bedeutet, das bei mittlerer Ausprägung der 

Abhängigkeitskognitionen die Depressionsschwere 18.18 BDI-Punkte beträgt. An allen übrigen 

Bestandteilen der Ausgabe ändert sich selbstverständlich nichts. 

 

Abbildung L.27. SPSS-Ausgabe für eine lineare Regressionsanalyse mit dem Kriterium 

Depressionsschwere und dem zentrierten Prädiktor Abhängigkeitskognitionen. 
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Wird anstelle der Abhängigkeitskognitionen ein entsprechend des Aufgabenteils (b) skalierter 

Prädiktor verwendet, so ergibt sich die in Abbildung L.28 gezeigte Ausgabe. Hier haben sich sowohl 

Achsenabschnitt und Steigung geändert. Der Achsenabschnitt 𝑎 = 11.83 entspricht nun dem 

Depressionsniveau für die kleinste Ausprägung der Abhängigkeitskognitionen in der Stichprobe, die 

Steigung 𝑏 = 12.95 entspricht der Änderung des Depressionsniveaus von der kleinsten zur größten 

Ausprägung der Abhängigkeitskognitionen in der Stichprobe. 

 

Abbildung L.28. SPSS-Ausgabe für eine lineare Regressionsanalyse mit dem Kriterium 

Depressionsschwere und dem umskalierten Prädiktor Abhängigkeitskognitionen. 
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Abbildung L.29 zeigt schließlich eine entsprechende SPSS-Ausgabe für die studentisierten 

Abhängigkeitskognitionen als Prädiktor. Der Achsenabschnitt entspricht nun wiederum dem 

Depressionsniveau bei einer mittleren Ausprägung der Abhängigkeitskognitionen, die Steigung 𝑏 = 3.56 

entspricht nun der Änderung des Depressionsniveaus für eine Änderung der Abhängigkeitskognitionen 

um eine Standardabweichung. 

 

Abbildung L.29. SPSS-Ausgabe für eine lineare Regressionsanalyse mit dem Kriterium 

Depressionsschwere und dem studentisierten Prädiktor Abhängigkeitskognitionen. 
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Beispiel 9.7 

Die Annahme eines linearen Zusammenhangs scheint berechtigt wie das Streudiagramm in Abbildung 

L.30 zeigt. 

 

Abbildung L.30. Benötigtest Streudiagramm für Beispiel 9.7. 

Eine einfache lineare Regressionsanalyse mit der Anzahl aufgewendeter Lernstunden als Prädiktor 

zeigt, dass das Ausmaß der aufgewendeten Lernzeit in der Tat einen signifikanten Anteil der Varianz 

des Kriteriums (LogitPunkte) erklären kann, F(1,138) = 779.788, p < .001, R2 = 0.85. D.h., die 

aufgewendete Lernzeit kann alleine 85% der Varianz der abhängigen Variablen in der Stichprobe 

erklären, was gemäß Cohen (1988) einem großen Effekt entspricht. Der geschätzte 

Regressionskoeffizient des einzigen Prädiktors unterscheidet sich dementsprechend auch signifikant 

von Null, b = 0.05 (stand. 𝛽 = 0.92), t(138) = 27.93, p < .001 (gerichtet). Der Schätzwert ist entsprechend 

der Hypothese positiv, d.h. nimmt die aufgewendete Lernzeit zu, so nimmt auch die abhängige Variable 

zu. Für einen Zuwachs der Lernzeit um 20 Stunden nimmt die abhängige Variable um 1 Einheit zu. 
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Beispiel 9.8 

Eine einfache lineare Regressionsanalyse zeigt, dass sich im Mittel in der Tat ein signifikanter Anteil 

der Prüfungsleistung durch den Gemüseanteil aufklären lässt, F(1,198) = 14.37, p < .001, R2 = .07, d.h., 

ein kleiner Effekt gemäß Cohen (1988). Der Anteil an Varianz der Prüfungsleistung, der in der 

Stichprobe durch den Gemüseanteil erklärt werden kann, beträgt 6.80%. Insbesondere ist der 

Regressionskoeffizient für den Gemüseanteil signifikant positiv, b = 0.13 (stand. 𝛽 = .26), t(198) = 3.79, 

p < .001 (ungerichtet), d.h. ein höherer Gemüseanteil in der Ernährung geht mit einer höheren 

Prüfungsleistung einher. Eine Erhöhung des Gemüseanteils um 10% geht mit einer Erhöhung der 

Prüfungsleistung um 1.3% einher. 

Ein Streudiagramm, in dem die Prüfungsleistung gegen den Gemüseanteil aufgetragen ist, ist in 

Abbildung L.31 dargestellt. 

 

Abbildung L.31. Streudiagram für die Prüfungsleistung und den Gemüseanteil aus Beispiel 9.8. 
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Beispiel 9.9 

(a) Ein signifikanter Anteil der Leistung bei einem Intelligenztest lässt sich auf die Menge an 

wöchentlich verzehrtem Brokkoli zurückführen, F(1, 462) = 232.69, p < .001, R2 = 0.34. Für 

ein Kilogramm mehr an wöchentlich verzehrtem Brokkoli steigt die Intelligenzleistung um 39 

IQ-Punkte, b = 0.04 (stand. β = .58), t(462) = 15.25, p < .001. Die Menge wöchentlich verzehrten 

Brokkolis erklärt 33.5% der Gesamtvarianz der Intelligenzleistung in der Stichprobe; es handelt 

sich gemäß Cohen (1988) um einen großen Effekt. Die Schätzwerte sowie Teststatistiken für 

die Modellparameter sind in Tabelle L.17 zusammengefasst. 

(b) Das Regressionsmodell mit beiden Prädiktoren erklärt einen signifikanten Anteil der Varianz 

der Leistung beim Intelligenztest, F(2, 461) = 119.28, p < .001, R2 = 0.34. Zusammen erklären 

beide Prädiktoren 34.1% der Gesamtvarianz der Intelligenzleistung in der Stichprobe; es handelt 

sich gemäß Cohen (1988) um einen großen Effekt. Allerdings ist (mit 𝛼 = .005) lediglich die 

Menge wöchentlich verzehrten Brokkolis ein signifikanter Prädiktor, bBrokkoli = 0.04 (stand. β = 

.54), t(461) = 12.59, p < .001. Die Menge wöchentlich verzehrter Karotten ist hingegen (mit 𝛼 

= .005) kein signifikanter Prädiktor, b = 0.01 (β = .09), t(461) = 2.06, p = .040. Das heißt, ist 

die Menge wöchentlich verzehrten Brokkolis bereits bekannt, kann mit der wöchentlich 

verzehrten Menge an Karotten kein signifikanter Zugewinn an nützlicher Information für die 

Vorhersage der Intelligenzleistung geleistet werden. Umgekehrt kann jedoch bei bekannter 

Menge wöchentlich verzehrter Karotten ein signifikanter Zugewinn an nützlicher Information 

für die Vorhersage der Intelligenzleistung durch die Berücksichtigung der wöchentlich 

verzehrten Menge an Brokkoli geleistet werden. Die Schätzwerte sowie Teststatistiken für die 

Modellparameter sind in Tabelle L.18 zusammengefasst. 

Tabelle L.17 

Schätzwerte und Teststatistiken für die Modellparameter des einfachen Regressionsmodells 

Prädiktor Schätzwert Standardfehler Stand. Koeff. t(462) p 

Achsenabschnitt (𝑎) 80.64 1.45  55.47 < .001 

Brokkoliverzehr (𝑏) 0.04 < 0.01 0.58 15.25 < .001 
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Tabelle L.18 

Schätzwerte und Teststatistiken für die Modellparameter des multiplen Regressionsmodells 

Prädiktor Schätzwert Standardfehler Stand. Koeff. t(461) p 

Achsenabschnitt (𝑎) 79.41 1.57  50.68 < .001 

Brokkoliverzehr (𝑏1) 0.04 < 0.01 0.54 12.59 < .001 

Karottenverzehr (𝑏2) 0.01 < 0.01 0.09 2.06 .040 

Beispiel 9.10 

Eine multiple Regressionsanalyse zeigt, dass die Anzahl verkaufter CDs, der Ticketpreis sowie das 

Werbebudget einen signifikanten Anteil der Varianz der Anzahl von Konzertbesuchern erklären können, 

F(3, 32) = 47.65, p < .001, R2 = 0.82. Insgesamt können die drei Prädiktoren 81.7% der Varianz der 

Anzahl der Konzertbesucher erklären, es handelt sich also um einen großen Effekt gemäß Cohen (1988). 

Steigt der Preis der Konzertkarten um einen Schweizer Franken, so sinkt die Besucherzahl (bei 

konstantem Werbebudget und CD-Verkauf) im Mittel um 43.23 Personen, bPreis = -43.23 (stand. β = -

0.20), t(32) = -2.61, p = .014. Steigt das Werbebudget um einen Schweizer Franken, nimmt die 

Besucheranzahl (bei konstanten Kartenpreis und CD-Verkauf) im Mittel um 0.54 Personen zu, bWerbung 

= 0.54 (stand. β = 0.74), t(32) = 9.66, p < .001. Verkauft eine Band eine CD mehr, so nimmt die 

Besucherzahl (bei konstantem Kartenpreis und Werbebudget) im Mittel um 0.97 Personen zu, bCD_Verkauf 

= 0.97 (stand. β = 0.44), t(32) = 5.76, p < .001. Die Schätzwerte sowie Teststatistiken für alle 

Modellparameter sind in Tabelle L.19 zusammengefasst. 

Tabelle L.19 

Schätzwerte und Teststatistiken für die Modellparameter des multiplen Regressionsmodells 

Prädiktor Schätzwert Standardfehler Stand. Koeff. t(32) p 

Achsenabschnitt (a) 5091.21 1820.56  2.80 .009 

Kartenpreis (bPreis) -43.23 16.55 -0.20 -2.61 .014 

Werbebudget (bWerbung) 0.54 0.06 0.74 9.66 < .001 

CD-Verkauf (bCD_Verkauf) 0.97 0.17 0.44 5.76 < .001 
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Beispiel 9.11 

(a) Der Logarithmus der Oberflächentemperatur der untersuchten 47 Sterne kann keinen 

signifikanten Anteil der Varianz des Logarithmus der Leuchtkraft erklären, F(1, 45) = 0.08, p = 

.782. Das Ergebnis steht im Widerspruch zur theoretischen Vorhersage. Die geschätzten 

Modellparameter sind in Tabelle L.20 zusammengefasst. 

(b) Werden die vier Sterne aus der Analyse ausgeschlossen, so kann der Logarithmus der 

Oberflächentemperatur der verbleibenden 43 Sterne einen signifikanten Anteil der Varianz des 

Logarithmus der Leuchtkraft erklären, F(1, 41) = 30.55, p < .001. Eine Erhöhung der 

Oberflächentemperatur um eine Größenordnung geht mit einer Erhöhung der Leuchtkraft um 

1.48 Größenordnungen einher, b = 1.48 (stand. β = 0.65), t(41) = 5.53, p < .001. Die geschätzten 

Modellparameter sind in Tabelle L.21 zusammengefasst. Auf der Grundlage dieser Ergebnisse 

kann argumentiert werden, dass die Theorie zum Zusammenhang zwischen Leuchtkraft und 

Oberflächentemperatur dahingehend eventuell dahingehend präzisiert werden muss, dass der 

postulierte lineare Zusammenhang nur für Hauptreihensterne bzw. nicht für Sterne vom Typ 

Rote Riesen gilt. Diesen Eindruck erweckt auch ein Vergleich der beiden Streudiagramme, die 

sich für alle 47 Sterne bzw. nur für die 43 Sterne ohne den Roten Riesen ergeben, siehe 

Abbildung L.32 und Abbildung L.33. 

Tabelle L.20 

Schätzwerte und Teststatistiken für die Modellparameter des einfachen Regressionsmodells 

Prädiktor Schätzwert Standardfehler Stand. Koeff. t(45) p 

Achsenabschnitt (𝑎) 5.30 1.11  4.77 < .001 

Oberflächentemperatur (𝑏) -0.07 0.25 -0.04 -0.28 .782 

Tabelle L.21 

Schätzwerte und Teststatistiken für die Modellparameter des einfachen Regressionsmodells 

Prädiktor Schätzwert Standardfehler Stand. Koeff. t(41) p 

Achsenabschnitt (𝑎) -1.74 1.20  -1.45 .155 

Oberflächentemperatur (𝑏) 1.48 0.27 0.65 5.53 < .001 
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Abbildung L.32. Streudiagramm aller 47 Sterne aus Beispiel 9.11 inklusive Fitgerade (blaue Linie). 

 

Abbildung L.33. Streudiagramm nur für die 43 Hauptreihensterne aus Beispiel 9.11 inklusive Fitgerade 

(blaue Linie). 



Anwendung statistischer Verfahren am Computer mit SPSS – Übungsaufgaben & Lösungen 

422 

Lösungen der Übungsaufgaben zu Kapitel 10 

Beispiel 10.1 

Richtig: (b). Falsch: (a), (c), (d). 

Beispiel 10.2 

Richtig: (a), (d). Falsch: (b), (c). 

Beispiel 10.3 

Regressionsdiagnostik für einfache Regression, d.h. für Teil (a) der Übungsaufgabe 10.3. Überprüfung 

der Linearitätsannahme: Keine Anzeichne für nichtlineare Verläufe, siehe Abbildung L.34. Überprüfung 

der Homoskedaszitätsannahme: scheint gut erfüllt (siehe Abbildung L.35). Überprüfung 

Normalverteilungsannahme: scheint ebenfalls gut erfüllt (siehe Abbildung L.36). Einflusswerte: 24 (= 

24/464 = 5.2%) vorhanden (kritischer Wert für Cooks Distanz = 4/464 = 0.0086), aber nicht 

überraschend, da nahe an 5%. 

Regressionsdiagnostik für multiple Regression, d.h. für Teil (b) der Übungsaufgabe 10.3. 1. 

Überprüfung der Linearitätsannahme: Keine Anzeichen für nichtlineare Verläufe durch Inspektion der 

partiellen Regressions-Plots, siehe Abbildung L.37 und Abbildung L.38. 2. Überprüfung der 

Homoskedaszitätsannahme: scheint gut erfüllt (siehe Abbildung L.39). 3. Überprüfung der 

Normalverteilungsannahme: scheint ebenfalls gut erfüllt (siehe Abbildung L.40). 4. Einflusswerte: 26 

vorhanden (5.6%); allerdings nicht überraschend von erwartbaren 5% verschieden. 
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Abbildung L.34. Streudiagramm für IQ und Menge wöchentlich verzehrten Brokkolis aus Beispiel 

10.3(a). 

 

Abbildung L.35. Streudiagramm für die studentisierten Residuen aus Beispiel 10.3(a). 
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Abbildung L.36. Histogramm der standardisierten Residuen aus Beispiel 10.3(a). 

 

Abbildung L.37. Partieller Regressions-Plot für IQ und Menge wöchentlich verzehrten Brokkolis aus 

Beispiel 10.3(b). 
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Abbildung L.38. Partieller Regressions-Plot für IQ und Menge wöchentlich verzehrter Karotten aus 

Beispiel 10.3(b). 

 

Abbildung L.39. Streudiagramm für die studentisierten Residuen aus Beispiel 10.3(b). 
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Abbildung L.40. Histogramm der standardisierten Residuen aus Beispiel 10.3(b). 

Beispiel 10.4 

Überprüfung der Linearitätsannahme: Keine Anzeichen für nichtlineare Verläufe durch Inspektion der 

partiellen Regressions-Plots, siehe „Kap10UE4.spv“. 

Überprüfung der Homoskedaszitätsannahme: scheint gut erfüllt (Inspektion des Streudiagramms für die 

studentisierten Residuen, siehe „Kap10UE4.spv“). 

Überprüfung der Normalverteilungsannahme: scheint ebenfalls gut erfüllt (Inspektion des Histogramms 

der standardisierten Residuen, siehe „Kap10UE4.spv“). 

Drei Einflusswerte (8.3%) vorhanden (kritischer Wert für Cooks Distanz = 4/36 = 0.111); allerdings 

nicht überraschend von erwartbaren 5% verschieden (das wären ca. 2 von 36), siehe 

„konzertbesuche_inkl_cook.sav“. 
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Beispiel 10.5 

Die Linearitätsannahme wurde mit den folgenden beiden partiellen Regressions-Plots (Abbildung L.41 

und Abbildung L.42) überprüft und erscheint zumindest dem visuellen Eindruck nach gerechtfertigt. 

 

Abbildung L.41. Partieller Regressions-Plot für IQ und Menge wöchentlich verzehrter Orangen aus 

Beispiel 10.5. 

 

Abbildung L.42. Partieller Regressions-Plot für IQ und Menge wöchentlich verzehrter Äpfel aus 

Beispiel 10.5. 

Die Homoskedastizitätsannahme wurde durch Inspektion des folgenden Streudiagramms 

(Abbildung L.43) untersucht und erscheint ebenfalls ganz gut erfüllt zu sein. 
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Abbildung L.43. Streudiagramm für die studentisierten Residuen aus Beispiel 10.5. 

Die Normalverteilungsannahme wurde mittels Inspektion des folgenden Histogramms für die 

standardisierten Residuen (Abbildung L.44) überprüft und erscheint ebenfalls ganz gut erfüllt zu sein. 

 

Abbildung L.44. Histogramm der standardisierten Residuen aus Beispiel 10.5. 
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Die Überprüfung auf Ausreißer wurde mittels Cooks Distanz durchgeführt. Es ergab sich, dass 22 

Datenpunkte eine Cooks Distanz größer als 4/n = 0.01 aufweisen, was allerdings 22/400 = 5.5% 

entspricht und damit im Bereich der erwarteten Anzahl an Datenpunkten mit einer solchen Cooks 

Distanz unter Gültigkeit aller Voraussetzungen für eine lineare Regressionsanalyse entspricht. 

Beispiel 10.6 

Die Linearitätsannahme wurde mit einem Streudiagramm untersucht und erscheint gerechtfertigt (siehe 

Abbildung L.45). 

 

Abbildung L.45. Streudiagramm für IQ und Leistung aus Beispiel 10.6. 

Die Homoskedastizitätsannahme wurde durch Inspektion des folgenden Streudiagramms 

(Abbildung L.46) untersucht und erscheint ebenfalls ganz gut erfüllt zu sein. 

 

Abbildung L.46. Streudiagramm für die studentisierten Residuen aus Beispiel 10.6. 
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Die Normalverteilungsannahme wurde mittels Inspektion des folgenden Histogramms 

(Abbildung L.47) für die standardisierten Residuen überprüft und erscheint ebenfalls ganz gut erfüllt zu 

sein. 

 

Abbildung L.47. Histogramm der standardisierten Residuen aus Beispiel 10.6. 

Die Überprüfung auf Ausreißer wurde mittels Cooks Distanz durchgeführt. Es ergab sich, dass 

53 Datenpunkte eine Cooks Distanz größer als 4/n = 0.004 aufweisen, was allerdings 53/1000 = 5.3% 

entspricht und damit durchaus im Bereich der erwarteten Anzahl an Datenpunkten mit einer solchen 

Cooks Distanz unter Gültigkeit aller Voraussetzungen für eine lineare Regressionsanalyse entspricht. 

Beispiel 10.7 

Richtig: (a). Falsch: (b), (c), (d). 

Beispiel 10.8 

Richtig: (b). Falsch: (a), (c), (d). 

Beispiel 10.9 

Der eigenständige Beitrag zur erklärten Varianz der Menge wöchentlich verzehrten Brokkolis beträgt 

0.4762 = 0.226 = 22.6%. Der eigenständige erklärte Beitrag der Menge wöchentlich verzehrter Karotten 

beträgt 0.0782 = 0.006 = 0.6%. Der Anteil der Gesamtvarianz, der nur durch beide Variablen gemeinsam 

erklärt werden kann, beträgt 34.1% − 22.6% − 0.6% = 10.8%. 
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Beispiel 10.10 

Der Preis der Konzertkarten erklärt eigenständig 3.9% der Varianz der Konzertbesucher, das 

Werbebudget erklärt eigenständig 53.3% der Varianz, und die Anzahl verkaufter CDs erklärt 

eigenständig 18.9% der Varianz. Damit verbleiben 5.7% der Varianz für die kombinierte Wirkung der 

drei Prädiktoren, und 18.3% der Varianz verbleiben unaufgeklärt. 

Beispiel 10.11 

Es werden 103 Personen benötigt. 

Beispiel 10.12 

Es werden 406 Personen benötigt. 
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Lösungen der Übungsaufgaben zu Kapitel 11 

Beispiel 11.1 

Richtig: (a), (d). Falsch: (b), (c). 

Beispiel 11.2 

Richtig: (a), (b), (c). Falsch: (d). 

Beispiel 11.3 

Eine einfache lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) statistisch nicht signifikanter 

Anteil der Varianz im Restgeldbetrag nach einem Casinobesuch der untersuchten n = 78 Personen 

dadurch erklärt werden kann, ob die Personen spielsüchtig sind oder nicht, F(1, 76) = 2.97, p = .089, R2 

= .04; ein kleiner Effekt gemäß Cohen (1988).  

Gemäß des resultierenden Regressionsmodells machen Personen ohne Spielsucht nach einem 

Casinobesuch im Mittel einen Nettoverlust von etwa 8 Euro (b = -8.40, t(76) = -2.47, p = .016). Dieser 

ist Verlust unterscheidet sich (mit 𝛼 = .005) nicht statistisch signifikant unterschiedlich von Null. 

Personen mit Spielsucht bleiben im Mittel etwa 8 Euro weniger übrig als Personen ohne Spielsucht. 

Dieser Unterschied ist (mit 𝛼 = .005) ebenfalls nicht statistisch signifikant (b = -8.30, 𝛽𝑧 = -.19, t(76) = 

-1.72, p = .089). 

Beispiel 11.4 

(a): Transform >> Recode into Different Variables…. Die Variable diagnosis soll umkodiert werden in 

eine Dummy-Variable. Wir nennen diese hier NOvsDIAG, um anzudeuten, dass in dieser Variable die 

Referenzkategorie „keine Diagnose“ mit der Kategorie „ADHS Diagnose“ vergleichen wird. 

Mit einem Klick auf den Knopf „Old and New Values…“ können dann die entsprechenden 

Werte eingegeben werden: Unter Old Value >> Value: geben wir no ein und unter New Value >> Value: 

geben wir 0 ein und klicken anschließend auf Add. Das gleiche machen wir für Old Value >> Value: 

yes und New Value >> Value: 1. Danach klicken wir auf Continue und Paste, um den Code in die 

Syntax zu bekommen. Dort können wir ihn dann ausführen und erhalten im Datensatz eine neue Variable 

namens NOvsDIAG. 
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(b): Transform >> Recode into Different Variables…. Die Variable medication soll umkodiert werden 

in zwei Dummy-Variablen. Wir nennen diese hier NONEvsRIT und NONEvsADD, um anzudeuten, dass 

hier „keine Medikation“ die Referenzkategorie ist und jeweils mit der Kategorie „ritalin“ und „adderall“ 

vergleichen wird. 

Mit einem Klick auf den Knopf „Old and New Values…“ können dann die entsprechenden 

Werte eingegeben werden. Zuerst bauen wir die Dummy-Variable für NONEvsRIT: Unter Old Value 

>> Value: geben wir none ein und unter New Value >> Value: geben wir 0 ein und klicken anschließend 

auf Add. Das gleiche machen wir für Old Value >> Value: adderall und New Value >> Value: 0 und 

Old Value >> Value: ritalin und New Value >> Value: 1. Danach klicken wir auf Continue und Paste, 

um den Code in die Syntax zu bekommen. Dort können wir ihn dann ausführen und erhalten im 

Datensatz eine neue Variable namens NONEvsRIT. 

Danach bauen wir die Dummy-Variable für NONEvsADD: Unter Old Value >> Value: geben 

wir none ein und unter New Value >> Value: geben wir 0 ein und klicken anschließend auf Add. Das 

gleiche machen wir für Old Value >> Value: ritalin und New Value >> Value: 0 und Old Value >> 

Value: adderall und New Value >> Value: 1. Danach klicken wir auf Continue und Paste, um den Code 

in die Syntax zu bekommen. Dort können wir ihn dann ausführen und erhalten im Datensatz eine neue 

Variable namens NONEvsADD. 

(c): Zuerst lassen wir uns den Mittelwert der Variable tolerance über Analyze >> Descriptive Statistics 

>> Frequencies… ausgeben. Mit Doppelklick in die Tabelle in der Ausgabe und dann einem 

Doppelklick auf den Mittelwert (21.385), wird der Mittelwert mit > 3 Nachkommastellen angezeigt und 

kann so mit höherer Genauigkeit rauskopiert werden (21.384920634920633). 

Danach wird über Transform >> Compute Variable… die neue zentrierte Variable berechnet. 

Unter „Target Variable“ schreiben wir den neuen Variablennamen c_tolerance (= centered tolerance) 

hinein. In das Feld „Numeric Expression“ schreiben wir tolerance - 21.384920634920633. Danach 

klicken wir auf Paste und führen den Code in der Syntax aus. 

(d): Über Transform >> Compute Variable… können wir schlussendlich auch die Interaktionsvariable 

zwischen dem Dummy für ADHS Diagnose (NOvsDIAG) und der zentrierten Frustrationstoleranz-
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Variable berechnen. Unter „Target Variable“ schreiben wir den neuen Variablennamen 

NOvsDIAG_X_c_tol hinein. In das Feld „Numeric Expression“ schreiben wir NOvsDIAG * 

c_tolerance. Danach klicken wir auf Paste und führen den Code in der Syntax aus. 

Beispiel 11.5 

Eine multiple lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) statistisch signifikanter Anteil 

der Varianz im Restgeldbetrag nach einem Casinobesuch der untersuchten n = 78 Personen durch die 

Prädiktoren Spielsucht, Restgeldbetrag eines vorangegangenen Casinobesuchs und deren Interaktion 

aufgeklärt werden kann, F(3, 74) = 51.93, p < .001, R2 = .68; ein großer Effekt gemäß Cohen (1988). 

Betrachtet man die einzelnen Regressionsparameter, machen Personen ohne Spielsucht, die bei 

einem vorangegangenen Casinobesuch mit 0 Euro Restgeldbetrag ausgestiegen sind, nach einem 

erneuten Casinobesuch im Mittel einen Nettogewinn von etwa 8 Euro (b = 7.78, t(74) = 1.52, p = .133). 

Dieser ist Gewinn unterscheidet sich (mit 𝛼 = .005) nicht statistisch signifikant unterschiedlich von Null. 

Personen mit Spielsucht, die bei einem vorangegangenen Casinobesuch mit 0 Euro 

Restgeldbetrag ausgestiegen sind, bleiben im Mittel etwa 17 weniger übrig als Personen ohne Spielsucht 

(b = -16.58, 𝛽𝑧 = -.17, t(74) = -2.17, p = .033). Dieser Unterschied ist (mit 𝛼 = .005) nicht statistisch 

signifikant. 

Wenn bei Personen ohne Spielsucht der Restbetrag beim Casinobesuch vor der Intervention um 

1 Euro höher ist, erwartet man einen um im Durchschnitt etwa 60 Cent höheren Restbetrag beim 

Casinobesuch nach der Intervention (b = 0.66, 𝛽𝑧 = .28, t(74) = 2.55, p = .013). Dieser Anstieg ist (mit 

𝛼 = .005) nicht statistisch signifikant. 

Wenn bei Personen mit Spielsucht der Restbetrag beim Casinobesuch vor der Intervention um 

1 Euro höher ist, erwartet man einen um im Durchschnitt etwa 2 Euro (= 0.656 + 1.343) höheren 

Restbetrag beim Casinobesuch nach der Intervention. 

Der Unterschied zwischen den beiden Effekten der Spielsüchtigen und Nicht-spielsüchtigen ist (mit 𝛼 

= .005) statistisch signifikant (b = 1.34, 𝛽𝑧 = .32, t(74) = 4.15, p < .001). 
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Beispiel 11.6 

Eine multiple lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) statistisch signifikanter Anteil 

der Varianz im ADHS-Wert der untersuchten n = 126 Personen durch die Prädiktoren 

Frustrationstoleranz, ADHS-Diagnose und deren Interaktion aufgeklärt werden kann, F(3, 122) = 21.19, 

p < .001, R2 = .34; ein großer Effekt gemäß Cohen (1988). 

Betrachtet man die einzelnen Regressionsparameter, haben Personen ohne ADHS Diagnose und 

einer mittleren Frustrationstoleranz im Mittel einen ADHS-Wert von etwa 31 Punkten (b = 30.50, t(122) 

= 20.11, p < .001). Im Vergleich dazu, haben Personen mit ADHS-Diagnose (bei mittlerer 

Frustrationstoleranz) im Mittel etwa 5 Punkte mehr im ADHS Fragebogen (b = 4.90, 𝛽𝑧 = .20, t(122) = 

2.67, p = .009). Dieser Unterschied im ADHS-Wert zwischen Personen mit und ohne ADHS-Diagnose 

ist (mit 𝛼 = .005) nicht statistisch signifikant.  

Weiters zeigt sich bei Personen ohne ADHS-Diagnose ein negativer Zusammenhang zwischen 

Frustrationstoleranz und ADHS-Wert: Bei einem Anstieg von 1 Punkt im Frustrationstoleranz-

Fragebogen, erwartet man eine Verringerung des ADHS-Werts um etwa 0.5 Punkte (b = -0.52, 𝛽𝑧 = 

- .34, t(122) = -2.91, p = .004). Dieser Zusammenhang ist (mit 𝛼 = .005) statistisch signifikant.  

Bei Personen mit ADHS-Diagnose findet sich ebenfalls ein negativer Zusammenhang zwischen 

Frustrationstoleranz und ADHS-Wert: Bei einem Anstieg von 1 Punkt im Frustrationstoleranz-

Fragebogen, erwartet man eine Verringerung des ADHS-Werts um etwa 0.9 Punkte (= -0.52 – 0.42 = 

- 0.94). Der Unterschied im Zusammenhang von Frustrationstoleranz und ADHS-Wert zwischen 

Personen mit und ohne ADHS-Diagnose ist (mit 𝛼 = .005) nicht statistisch signifikant (b = -0.42, 𝛽𝑧 = -

.20, t(122) = -1.78, p = .078). 

Beispiel 11.7 

Eine multiple lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .05) statistisch signifikanter Anteil 

der Varianz im ADHS-Wert der untersuchten n = 126 Personen durch die Prädiktoren 

Frustrationstoleranz, ADHS-Medikation und deren Interaktion aufgeklärt werden kann, F(5, 120) = 

21.39, p < .001, R2 = .47; ein großer Effekt gemäß Cohen (1988). 
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Betrachtet man die einzelnen Regressionsparameter, haben Personen, die kein ADHS-

Medikament einnehmen, und eine mittlere Frustrationstoleranz haben im Mittel einen ADHS-Wert von 

etwa 31 Punkten (b = 30.50, t(120) = 22.24, p < .001).  

Im Vergleich dazu, haben Personen (mit mittlerer Frustrationstoleranz), die Ritalin einnehmen, 

im Mittel etwa 4 Punkte mehr im ADHS-Fragebogen (b = 3.96, 𝛽𝑧 = .16, t(122) = 1.99, p = .048). Dieser 

Unterschied im ADHS-Wert zwischen Personen, die kein ADHS-Medikament einnehmen, im Vergleich 

zu Personen, die Ritalin einnehmen, ist (mit 𝛼 = .05) statistisch signifikant. Personen (mit mittlerer 

Frustrationstoleranz), die Adderall einnehmen, haben im Vergleich zu Personen, die kein ADHS-

Medikament einnehmen, etwa 3.5 Punkte mehr im ADHS-Fragebogen (b = 3.50, 𝛽𝑧 = .15, t(122) = 1.85, 

p = .068). Dieser Unterschied ist (mit 𝛼 = .05) statistisch nicht signifikant. 

Weiters zeigt sich bei Personen, die kein ADHS-Medikament einnehmen, ein negativer 

Zusammenhang zwischen Frustrationstoleranz und ADHS-Wert: Bei einem Anstieg von 1 Punkt im 

Frustrationstoleranz-Fragebogen, erwartet man eine Verringerung des ADHS-Werts um etwa 0.5 Punkte 

(b = -0.52, 𝛽𝑧 = -.34, t(120) = -3.21, p = .002). Dieser Zusammenhang ist (mit 𝛼 = .05) statistisch 

signifikant.  

Bei Personen, die Ritalin einnehmen, ist der negative Zusammenhang zwischen 

Frustrationstoleranz und ADHS-Wert noch stärker negativ: Bei einem Anstieg von 1 Punkt im 

Frustrationstoleranz-Fragebogen, erwartet man eine Verringerung des ADHS-Werts um etwa 1.7 

Punkte. Der Unterschied im Zusammenhang zwischen Frustrationstoleranz und ADHS-Wert ist bei 

Personen, die kein ADHS-Medikament einnehmen, und Personen, die Ritalin einnehmen, (mit 𝛼 = .05) 

statistisch signifikant (b = -1.13, 𝛽𝑧 = -.39, t(120) = -4.34, p < .001).  

Bei Personen, die Adderall einnehmen, ist der Zusammenhang zwischen Frustrationstoleranz 

und ADHS-Wert leicht negativ: Bei einem Anstieg von 1 Punkt im Frustrationstoleranz-Fragebogen, 

erwartet man eine Verringerung des ADHS-Werts um etwa 0.1 Punkte. Der Unterschied im 

Zusammenhang zwischen Frustrationstoleranz und ADHS-Wert ist bei Personen, die kein ADHS-

Medikament einnehmen, und Personen, die Adderall einnehmen, (mit 𝛼 = .05) statistisch nicht 

signifikant (b = 0.39, 𝛽𝑧 = .13, t(120) = 1.48, p = .141). 
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Beispiel 11.8 

(a):  

 Unstandardized B t Sig. 

(Constant) 108.89 53.67 <.001 

Gruppe -8.94 -2.83 .007 

(b): Eine einfache lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .05) statistisch signifikanter Anteil 

der Varianz im IQ der untersuchten n = 46 Personen dadurch erklärt werden kann, ob die Personen BWL 

oder Psychologie studieren, F(1, 44) = 8.02, p = .007, R2 = .15; ein mittlerer Effekt gemäß Cohen (1988).  

Gemäß des resultierenden Regressionsmodells haben Psychologiestudierende im Mittel einen 

IQ von zirka 109 (b = 108.89, t(44) = 53.67, p < .001). BWL-Studierende haben im Mittel einen IQ der 

etwa 9 IQ-Punkte niedriger ist als der von Psychologiestudierenden (b = -8.94, t(44) = -2.83, p = .007). 

Dieser Unterschied ist (mit 𝛼 = .005) statistisch signifikant. 

Beispiel 11.9 

(a): Zuerst lassen wir uns den Mittelwert der Variablen water und shade über Analyze >> Descriptive 

Statistics >> Frequencies… ausgeben. Hier in diesem Beispiel sieht man auch mit Blick in die Daten, 

dass der Mittelwert beider Variablen genau 2 ist. 

Danach wird über Transform >> Compute Variable… die neue zentrierte Variable zuerst für 

water, dann für shade berechnet. Unter „Target Variable“ schreiben wir den neuen Variablennamen 

c_water (= centered water) hinein. In das Feld „Numeric Expression“ schreiben wir „water – 2“. Danach 

klicken wir auf Paste, führen den Code in der Syntax aus und wiederholen das Ganze für die Variable 

shade. 

(b): Über Transform >> Compute Variable… können wir dann die Interaktionsvariable zwischen den 

beiden zentrierten Variablen c_water und c_shade berechnen. Unter „Target Variable“ schreiben wir 

den neuen Variablennamen c_water_X_c_shade hinein. In das Feld „Numeric Expression“ schreiben 

wir c_water*c_shade. Danach klicken wir auf Paste und führen den Code in der Syntax aus. 
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(c): Eine multiple lineare Regressionsanalyse ergab, dass ein (mit 𝛼 = .005) statistisch signifikanter 

Anteil der Varianz in der Größe der Tulpenblüten von n = 27 Tulpen durch die Prädiktoren Feuchtigkeit, 

Beschattung und deren Interaktion aufgeklärt werden kann, F(3, 23) = 23.33, p < .001, R2 = .75; ein 

großer Effekt gemäß Cohen (1988). 

Betrachtet man die einzelnen Regressionsparameter, haben Tulpenblüten bei mittlerer 

Feuchtigkeit und mittlerer Beschattung eine durchschnittliche Größe von 129 (b = 128.99, t(23) = 12.68, 

p < .001). Für eine mittlere Beschattung, erwartet man bei einem Anstieg der Feuchtigkeit um 1 einen 

Anstieg in der Blütengröße um 75.8 (b = 75.80, 𝛽𝑧 = .68, t(23) = 6.56, p < .001). Dieser Anstieg ist (mit 

𝛼 = .005) statistisch signifikant. Bei einer mittleren Feuchtigkeit der Blumenerde, erwartet man bei einer 

Erhöhung der Beschattung um 1 eine Reduktion der Blütengröße um 41.6 (b = -41.60, 𝛽𝑧 = -.37, t(23) 

= -3.60, p = .002). Dieser Anstieg ist (mit 𝛼 = .005) ebenfalls statistisch signifikant.  

Weiters verändert sich der Zusammenhang zwischen Feuchtigkeit und Blütengröße je nach 

Beschattungsniveau (und umgekehrt): Bei einer Erhöhung der Beschattung um 1 sinkt die Steigung der 

Regressionsgerade des Effekts von Feuchtigkeit auf Blütengröße um 52.9 (b = -52.85, 𝛽𝑧 = -.39, t(23) 

= -3.74, p = .001). Diese Interaktion bzw. Veränderung des Zusammenhangs ist (mit 𝛼 = .005) statistisch 

signifikant. 

Beispiel 11.10 

Um in SPSS ein Streudiagramm zu erstellen, bei dem die Datenpunkte andere Farben je nach 

Ausprägung einer dritten Variablen haben, muss diese in der SPSS-Datendatei als nominal klassifiziert 

sein. Im Beispiel 12.9 hat die Variable shade genau 3 Ausprägungen (1, 2 und 3), obwohl sie eine stetige 

Variable ist. Indem wir die Variable über Transform >> Compute Variable… einfach kopieren 

(shade_diskret = shade), legt SPSS automatisch eine als nominal-skalierte neue Variable namens 

shade_diskret an. Optional kann auch händisch einfach das Skalenniveau in der Variablenansicht in der 

Spalte „Measure“ umgestellt werden, obwohl es sich auch hier empfiehlt, zuerst eine Kopie der 

originalen shade Variable zu machen. 

Im Anschluss kann über Graphs >> Chart Builder… das erwünschte Streudiagramm 

ausgegeben werden. Unter Scatter/Dot wird ein Streudiagramm ausgewählt (Scatter Plot). Auf die x-
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Achse setzen wir die zentrierte Variable c_water und auf die y-Achse das Kriterium blooms. Rechts 

oben im Diagramm bei „Set color?“ ziehen wir die neue diskrete Variable shade_diskret rein. Die 

Diagrammvorschau sollte dann gleich unterschiedlich färbige Punkte zeigen. In der rechten Spalte des 

Chart Builder Fensters wählen wir ganz unten noch bei den „Linear Fit Lines“ „Subgroups“ aus, damit 

uns für jede Gruppe der Belichtung (1 = niedrige Beschattung, 2 = mittlere Beschattung, 3 = hohe 

Beschattung) eine eigene Regressionsgerade ausgegeben wird. Danach klicken wir auf Paste und führen 

den Code in der Syntax aus. 
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Nachwort zur ersten überarbeiteten Fassung dieses Manuskript 

Wenn nach einem Monat bereits die erste überarbeitete Fassung eines Manuskripts vorliegt (die jetzt 

auch über eine Versionsnummer verfügt, um zukünftige Aktualisierungen voneinander und von früheren 

Fassungen unterscheiden zu können), heißt das mindestens zweierlei. Erstens, dass in der ursprünglichen 

Fassung Mängel vorhanden waren, die zügiger Korrektur bedurften. Zweitens, dass es Personen gibt, 

deren kritische Durchsicht die Entdeckung dieser Mängel überhaupt ermöglichte, da Verfasser:innen 

selbst für diese bekanntlich bei der Erstellung der entsprechenden Texte zunehmend blind werden und 

jedenfalls für einen gewissen Zeitraum nach der Fertigstellung auch blind bleiben. 

Ich kann mich jedenfalls glücklich schätzen, solch kritische Leser:innen für die erste Fassung 

diese Manuskripts gefunden zu haben, welchen ich mich zutiefst zu Dank verpflichtet fühle. In erster 

Linie geht dabei mein Dank an Prof. H. Harald Freudenthaler, der neben seinen Verpflichtungen und 

noch dazu mitten im Semester die Zeit fand, die erste Fassung dieses Manuskripts in nicht einmal ganz 

zwei Wochen zur Gänze durchzusehen. Ihm ist es zu verdanken, dass diese erste überarbeitete Fassung 

nun auch einen umfassenderen Abschnitt zur Korrelation, d.h. zu Maßen des Zusammenhangs zwischen 

Variablen, enthält. Letztere wurden in der ersten Fassung lediglich in einem Exkurs im Rahmen der 

linearen Regression abgehandelt. Dies war allerdings mehr der Eile geschuldet, mit der die erste Fassung 

im Verlauf eines bereits begonnen Semesters fertiggestellt wurde, als dem Raum, dem eine 

grundlegende Einführung in solche Maße des Zusammenhangs gebühren sollte, auch wenn hier nach 

wie vor nur die wesentlichen Anwendungsaspekte derselben berührt werden. Erwähnung finden nun 

jedenfalls neben Pearsons Korrelationskoeffizient auch Spearmans Rangkorrelationskoeffizient sowie 

Kendalls tau. Die unterschiedlichen Arten wie diese Koeffizienten Zusammenhänge zwischen Variablen 

erfassen werden dabei in einer Reihe von Beispielen gegenübergestellt. Ganz dem Credo der ersten 

Fassung dieses Manuskripts treu bleibend werden dafür auch die Übungsaufgaben genutzt, die zu 

diesem Zweck um wesentliche Beispiele erweitert wurden. So hat Anscombes berühmt berüchtigtes 

Quartett nun Eingang in diese Sammlung aus Übungen gefunden. Zudem wurde ein Beispiel, das auf 

Rand R. Wilcox zurückgeht, in die Übungsaufgaben eingearbeitet, um zu veranschaulichen, dass alle 

drei behandelten Maße des Zusammenhangs empfindlich auf einige ungewöhnliche Datenpunkte (sog. 

Ausreißer) reagieren können. Interessierten Leser:innen sind damit hoffentlich auch genug Hinweise 
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gegeben, wie sie, wenn Notwendigkeit oder Neugier es verlangen, über diese grundlegenden 

Möglichkeiten Zusammenhänge zwischen Variablen zu beschreiben hinausgelangen können. 

Zum Dank verpflichtet bin ich ein weiteres Mal auch meinen Studierenden, die mich unablässig 

beim gemeinsamen Üben der vielfältigen Beispiele auf die eigenen Versehen in den vorbereiteten oder 

ad-hoc demonstrierten Lösungen hinweisen. Als Lehrenden erfreut mich das mindestens in zwei 

Hinsichten. Erstens heißt es, dass einige sich so gewissenhaft und gleichzeitig inhaltlich mit den 

Lernmaterialien auseinandersetzen, dass ihnen diese Mängel überhaupt ins Bewusstsein treten, und 

diese Tatsache allein muss dem Lernerfolg bereits zuträglich sein. Zweitens bedient das Lernmaterial 

damit auch einen Lernansatz, den ich, gerade, wenn es um komplexere Lerninhalte geht, für äußerst 

effektiv halte: das Lernen durch kritisches Prüfen. In Zeiten, in denen Hilfsangebote aller möglichen 

künstlichen Intelligenzen zu allen möglichen Inhalten immer weiter um sich greifen, erscheint mir das 

kritische Überprüfen angebotener Informationen sowohl als geeignete als auch willkommene 

Versicherung gegen ein vielleicht effizientes, aber unmündiges Übernehmen scheinbarer Wahrheiten. 

Wer sich der Informationsflut unserer Zeiten nicht ohnmächtig ausliefern will, muss sich zwangsläufig 

in der Kultivierung der eigenen Urteilsfähigkeit üben. Das kritische Überprüfen von Lernmaterial mit 

der Intention der Aneignung praktischen, anwendungsbezogenen Wissens scheint mir dafür nicht der 

schlechteste Anlass zu sein. 

Wenn mich dann Studierende etwa darauf hinweisen, dass bei der „Varianz 𝜎“ doch irgendwo 

ein Quadrat (im Exponenten) verloren gegangen sein muss, dann geht mir als Lehrendem ebenso wie 

als selbst unablässig Lernendem natürlich im wahrsten Sinne des Wortes das Herz auf. Denn in diesen 

Momenten wird mir demonstriert: hier wird den Inhalten nach-gedacht, über die Inhalte reflektiert, ohne 

die Inhalte für bare Münze zu nehmen, und schließlich auf dem Fundament des eigenen Verstehens 

geurteilt; und wo das geschieht, findet Lernen, Einsicht und Verstehen statt. Und ein angemessenerer 

und schönerer Sinn kann diesem Manuskript zum selbständigen Üben, Lernen und Verstehen wohl kaum 

gegeben werden. Aber dem vorliegenden Manuskript solchen Sinn zu verleihen, ist nicht meine, sondern 

die Errungenschaft eben jener Studierenden, für die ich allein aus diesem Grunde schon nicht anders als 

in tiefster Dankbarkeit und Hochachtung verbleiben kann. 

Stefan E. Huber, Graz am 26. Mai 2025 
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Nachwort zur ersten Fassung dieses Manuskripts 

Die Idee zu diesem Manuskript war ebenso schlicht wie naiv: einen Text verfassen, den jemand im 

Selbststudium Stück für Stück durcharbeiten könnte, um dann am Ende ein besseres Verständnis für 

jene Inhalte erlangt zu haben, die in der Zeit, als ich an der Universität Graz Übungen in der Anwendung 

statistischer Verfahren unterrichten durfte, in entsprechenden Vorlesungen zur Statistik für 

Psycholog:innen gelehrt wurden. 

Die Idee war schlicht, weil genau das das Ziel der Lehrveranstaltung war, die mir (unter vielen 

anderen) anvertraut worden war: Studierenden ein Verständnis für jene grundlegenden statistischen 

Verfahren zu vermitteln, die im zu dieser Zeit üblichen Lehrkanon zur statistischen Grundbildung im 

Bachelorstudium Psychologie vorgesehen waren. Die inhaltlichen Grenzen, sowohl was statistische 

Verfahren als auch Werkzeuge zu ihrer Anwendung (Computerprogramme, Software) anging, waren 

mit diesen Rahmenbedingungen relativ klar abgesteckt. Auch wenn diese nicht unbedingt meinen 

persönlichen Präferenzen entsprachen (Wo ist das Prinzip maximaler Entropie? Wo ist das Gesetz 

inverser Wahrscheinlichkeiten? Wo sind die Diskussionen eines unhaltbaren Begriffs der „Äquivalenz“ 

von Zufallsexperimenten? Wo sind die Diskussionen über andere Zugänge zum Begriff der 

Wahrscheinlichkeit? Und wo sind schließlich die erkenntnistheoretischen Bezüge und die Bezüge zum 

Prozess der Forschung selbst – die Achillesferse jedes frequentistischen Zugangs, da selbst Fisher, 

nachdem er ein Leben lang darüber nachgedacht hat, erkennen musste, dass ein solcher Zugang den 

Forschungsprozess, das, was Wissenschaft und Erkenntnis überhaupt ist, nicht konsistent beschreiben 

kann?), so war mir der Gedanke daran, Studierende, die noch am Anfang ihres Studiums der 

Wissenschaft vom Menschen stünden und dieses Studium nicht unbedingt aufgrund ihrer Liebe zu 

Wahrscheinlichkeitstheorie und Statistik wählten, dabei unterstützen zu können, sich einen Reim auf 

das machen zu können, was sich da eben über das letzte Jahrhundert als statistische Methodologie in der 

Psychologie etabliert hatte, doch von Anfang an ein erfreulicher. Denn die Verwirrung über dieses 

Thema ist groß. Unter Anfänger:innen ebenso wie unter sogenannten Expert:innen. Und nicht minder 

beim Verfasser dieser Zeilen. 
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Zum Teil liegt das daran, weil vieles, wenn nicht das Meiste, aus den Bereichen der 

Wahrscheinlichkeitstheorie oder der Statistik nicht intuitiv, nicht leicht zugänglich ist. Manche Aspekte 

scheinen vielmehr so entgegen jeder Zugänglichkeit, dass man für den Hauch eines Verständnisses dafür 

das tun muss, was andernorts als Verrücktheit gilt: sich immer und immer wieder – scheinbar vergeblich 

– Gedanken darüber zu machen, mit zweifelhaftem Ausgang. Die historischen Figuren der betreffenden 

Fachgebiete können völlig zurecht nicht deshalb Expert:innen genannt werden, weil sie – um nur ein 

Beispiel zu nennen – etwa wissen, was ein p-Wert ist, sondern weil sie sich jahrzehntelang mit der 

Problematik, die mit dem Konzept eines p-Werts einhergeht, beschäftigt haben und deshalb besser 

verstehen als die meisten, wie problematisch dieses Konzept im Grunde ist. Die Grundlagen der Statistik 

besser zu verstehen, soll einen oder eine nicht in die Lage versetzen, wie etwas scheinbar richtig gemacht 

wird; vielmehr soll es in die Lage versetzen, an der Diskussion darüber überhaupt teilnehmen zu können. 

Naiv war die Idee zu diesem Manuskript deshalb, weil ein Text allein diese Ziele vermutlich 

immer verfehlen muss. Statistische Grundlagen besser zu verstehen, ist keine Sache des Lesens, es ist 

eine Sache des Denkens, aber auch des Tuns, des mentalen und praktischen Arbeitens mit den Inhalten. 

Lesen kann aber einen Anstoß zu diesem aktiven Bearbeiten geben. Und mehr noch: ein Text kann 

immerhin ein Gerüst, ein bisschen Anleitung bieten, wie man mit bestimmten Inhalten überhaupt 

arbeiten kann. Und diesem Ziel kann ein Text durchaus gerecht werden. Ob dieses Manuskript das tut, 

daran habe ich so meine Zweifel. Seine Intention ist es aber immer gewesen. 

In der Tat war mein Leitgedanke derjenige, der schon im ersten Kapitel in aller Breite erläutert 

worden ist. Eine Person liest sich ein Kapitel dieses Manuskripts durch, wiederholt dabei einige 

wesentliche theoretische Konzepte, versucht sich dann an deren Anwendung für einige der gegebenen 

Übungsaufgaben, stellt sich in diesem Prozess – wie jede:r Lernende zwangsläufig – neue Fragen, bringt 

diese Fragen in die gemeinsamen Lehrveranstaltungsstunden mit, wo wir sie alle diskutieren, uns daran 

üben, dabei lernen, und schließlich daran wachsen können. 

Dieser Gedanke ist ebenfalls überaus naiv. Denn die viel realistischere Annahme ist, dass 

niemand, außer dem Verfasser selbst wahrscheinlich, freiwillig jemals dieses Manuskript von vorn bis 

hinten durchlesen wird, ganz zu schweigen von durcharbeiten. Einzelne Kapitel, vielleicht; wenn man 
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es soll. Die Übungsaufgaben? Wenn es sich vermeiden lässt, eher nicht. Der Realismus dieser Annahme 

– der jeder Person, die selbst einmal Studierende gewesen ist, offenkundig sein muss – entbehrt nicht 

einer gewissen Ironie. Denn selbst wenn das Einzige, was zur Teilnahme an einer meiner 

Lehrveranstaltungen motiviert, deren positiver Abschluss ist, gibt es vermutlich keinen gleichzeitig 

bequemeren als auch nützlicheren Weg zu diesem positiven Abschluss zu kommen als sich regelmäßig, 

Kapitel für Kapitel, Woche für Woche, mit diesem Manuskript zu befassen. Was immer man für einen 

positiven Abschluss der Lehrveranstaltung benötigt, es steht hier. Und das nicht nur angedeutet, in Form 

von Stichworten, auf Vortragsfolien, die mehr durch ihr Design als ihren Inhalt bestechen, nein: 

ausformuliert, in ganzen Sätzen, und wichtiger: in von vorn bis hinten durchexerzierten Beispielen. 

Ich war selbst einmal Student, bin bis heute einer, habe viele Lehrveranstaltungen besucht, viele 

Lehrbücher konsultiert. Die besten Lehrer und Lehrer:innen (sowohl solche, die ich sprechen und 

vortragen gehört habe, als auch jene, die ich nur lesend kennengelernt habe) waren mir dabei jene, die 

nicht darüber gesprochen haben, wie „etwas“ zu machen sei, sondern, die mir gezeigt haben, wie sie 

dieses „etwas“ im konkreten Fall machen. Die beste Vorlesung, die ich jemals besucht habe, war in der 

Tat eine Vorlesung: ein Philosoph, der aus einem Buch vorlas, und nach einem Absatz oder zwei, das 

Buch zur Seite legte und laut über das Gelesene nachdachte. In dieser Vorlesung habe ich zwei Dinge 

gelernt: Lesen und Denken. Und ich lernte es, weil mir jemand zeigte, wie man das machen kann. Nicht, 

wie man es machen soll. Sondern wie jemand mit sehr viel mehr Erfahrung in diesen Dingen das machen 

kann (inklusive der Fehler, die dabei passieren, der Irrwege, die dabei eingeschlagen werden können). 

Ich bin froh, dass die Intention dieses Manuskripts keine so erhabene war wie die Illustration 

des Philosophierens selbst. Aber auch für die Anwendung statistischer Verfahren war mir völlig klar, 

was mein Manuskript leisten können sollte: es sollte Personen, die daran – aus welchen Gründen auch 

immer – interessiert sind, zeigen, wie man grundlegende statistische Verfahren auf konkrete 

Fragestellungen anwenden kann. Das heißt insbesondere, es darf nicht abstrakt bleiben, es muss zeigen, 

d.h. konkret machen, Sätze ausformulieren, nicht sagen, was – abstrakt – in einem Ergebnisbericht 

stehen sollte, sondern konkrete Ergebnisberichte in ganzen Sätzen ausformuliert beinhalten, nicht die 

Durchführung einer Methode andeuten, sondern an einem konkreten Beispiel vorführen, was eine 

Methode durchführen oder anwenden alles beinhaltet, welche Entscheidungen dabei getroffen werden 
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müssen – und wie selten diese klar und deutlich sind, vom oft gar nicht so simplen Einlesen eines 

Datensatzes bis zur oft alles anderen als eindeutigen Interpretation der Ergebnisse, die einen nicht selten 

mit mehr Fragen als Antworten zurücklässt. Und es muss viele Möglichkeiten bieten, all das selbst an 

weiteren konkreten Fällen ausprobieren zu können, für die es ebenfalls wenigstens einen gut 

ausgeleuchteten, illustrierten Lösungsweg bereits gibt, mit dem der eigene am Ende verglichen werden 

kann. Denn wie viel durfte ich daraus lernen, weil ich andere dabei beobachten konnte, wie sie an 

schwierige, herausfordernde Probleme herangingen (nicht an die einfachen, symmetrischen, die man 

gerne in Vorlesungen an der Tafel vorführt)? Alles – würde ich behaupten, was mir überhaupt erst die 

Mittel an die Hand gab, später selbst Probleme lösen zu können, für die es bis dahin noch keine bekannte 

Lösung gab. Ohne diese konkreten, leibhaftigen Beispiele wäre aus mir kein Forscher geworden; das 

heißt, keiner, der das Gewinnen von Erkenntnis aus dem Unbekannten praktiziert. 

Das bedeutete, das Manuskript musste die Anwendung grundlegender statistischer Verfahren in 

ihrer ganzen Konkretheit vorzeigen, sie für den Nachvollzug, das Nach-Denken und Nach-Machen 

verfügbar machen, und das in einer Mannigfaltigkeit an Beispielen. Wer diese Beispiele dann 

nachverfolgt, nachbearbeitet, und dabei immer wieder tut, was eben jemand tut, der grundlegende 

statistische Verfahren anwendet, der oder die wird von Beispiel zu Beispiel vertrauter damit, übt sich in 

diese eigentümliche Tätigkeit ein, und versteht besser und besser, worin sie eigentlich besteht. 

Wie gut es mir gelungen ist, diesen Leitgedanken gerecht zu werden, können nur jene 

Studierenden beurteilen, die sich kühn daran wagen, ihre Fähigkeiten in der Anwendung grundlegender 

statistischer Verfahren durch die Beschäftigung mit diesem Manuskript (hoffentlich zum Positiven) zu 

verändern. Dafür, dass es diese Möglichkeit nun überhaupt geben kann, bin ich umso dankbarer all 

diesen, die auszugsweise manche Teile dieses Manuskripts im wahrsten Sinne des Wortes ausprobiert 

und erprobt haben, lange bevor es auch nur annähernd mehr war als ein bloßes Hirngespinst. 

Allen voran danke ich dafür Nadine Schmer, die nicht nur einen großen Teil des Manuskripts 

korrekturgelesen und zahlreiche der Übungsaufgaben und ihrer Lösungen überprüft hat, sondern auch 

die erste Fassung des zweiten Kapitels verfasst hat. Danach danke ich meinen Studierenden an der 

Universität Graz aus den Kursen „Anwendung statistischer Verfahren am Computer“ der Jahrgänge 
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2023-2025, ohne die es dieses Manuskript schlichtweg nicht geben würde. Neben zahlreichen 

inhaltlichen Rückmeldungen und Anmerkungen zu Schwierigkeiten und Herausforderungen beim 

Lernen statistischer Inhalte im Allgemeinen, aber insbesondere auch bei der Anwendung der im Kurs 

verwendeten Software, der von mir angebotenen Hilfestellungen und Erklärungsversuche, oder der 

Übertragung von konzeptuellen Vorlesungsinhalten in konkrete Problemstellungen, waren es vor allem 

der beispielhafte Wille sich auch mit schwierigen Inhalten wiederholt auseinanderzusetzen und das 

Engagement, die Neugier und die Freude, mit der sie mir in den einzelnen Lehrveranstaltungseinheiten 

immer wieder begegnet sind, die mich inspiriert und motiviert haben, mich stets aufs Neue der Arbeit 

dieser Niederschrift zuzuwenden. Ich hoffe, dass das auf dieser Grundlage gewachsene Manuskript zur 

Lehrveranstaltung nun auch den Studierenden im voraussichtlich letzten Jahr meiner Lehrzeit an dieser 

Universität dazu dienen kann, nicht nur das Erreichen der konkreten Lernziele, sondern auch das 

Verstehen statistischer Konzepte und ihrer Anwendung im Allgemeinen zu erleichtern. 

Stefan E. Huber, Graz am 26. April 2025 
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